RI beam production at BigRIPS in 2014

N. Fukuda, *1 Y. Shimizu, *1 H. Takeda, *1 H. Suzuki, *1 D.S. Ahn, *1 N. Inabe, *1 D. Murai, *1,*2 K. Yoshida, *1 H. Sato, *1

Y. Sato, *1 K. Kusaka, *1 Y. Yanagisawa, *1 M. Ohtake, *1 D. Kameda, *1 and T. Kubo *1

RI beam production at the BigRIPS fragment separator¹⁾ in 2014 is presented. Table 1 lists the experimental programs carried out at BigRIPS in this period and the RI beams produced for each experiment.

The beam time at the RIBF started in March with the Uranium beam campaign, in which 6 experiments were performed. The long-lived fission products, ¹³⁷Cs and ⁹⁰Sr, were produced by the in-flight fission of the ²³⁸U beam to investigate their nuclear-transmutation reaction²⁾. Owing to their proximity to the β -stability line, we experienced difficulties in improving the purities of the isotopes of interest.

The ⁵⁵Ca and ⁵⁶Ca beams were produced by projectile fragmentation of a ⁷⁰Zn beam for a direct mass measurement at the SHARAQ spectrometer. A spectroscopy of deeply-bound pionic atoms was performed using the BigRIPS separator as a high-resolution spectrometer. The spring beam time ended with the ¹⁶O beam experiment at

the SHARAQ spectrometer.

The autumn beam time began in October with the second Uranium beam campaign, which consisted of 6 experiments. First, a machine study was conducted to study particle identification and isotope separation when producing heavier beams with an atomic number (*Z*) of around 80^{3}). It was the first attempt at the RIBF. The ¹⁷²Dy and ¹⁷⁰Dy beams were delivered to the EURICA experiment. The RI-beam production around Z = 65 at BigRIPS has been pioneered in recent new-isotope-search experiments^{4,5)}.

The ⁴⁸Ca primary beam was provided with a high intensity of approximately 500 pnA. Such a high-intensity beam made it possible to search for the neutron drip line for the F, Ne, and Na isotopes.

The experiments to search for new neutron-rich isotopes were performed using the in-flight fission of a ²³⁸U beam^{5,7)}, as shown in Table 1. A total of 28 new isotopes were identified in the preliminary analysis.

Primary beam	Proposal No.	Course	RI beam (Primary beam)			
	NP1306-SAMURAI17	SAMURAI	132 Sn			
	NP1306-SAMURAI14	SAMURAI	(^{238}U)			
²³⁸ U	NP1306-RIBF31R1	ZeroDegree	¹³⁰ Cd			
345 MeV/u	DA14-01	ZeroDegree	¹³⁷ Cs, ⁹⁰ Sr			
	DA14-02-01	BigRIPS	New isotope search ($Z \sim 55 - 70$ region)			
	NP1312-RIB118	ZeroDegree	⁷⁹ Cu, ⁷³ Co, ⁶⁷ Mn			
⁷⁰ Zn	ND1212 SILADAO2D	SUADAO	$56C_{2}$ $55C_{2}$ $54S_{2}$			
345 MeV/u	NP1312-SHARAQ3R	зпакад	Ca, Ca, Sc			
^{2}H	ND1212 DIDE54D1		${}^{1}\mathbf{U} {}^{3}\mathbf{U}_{2} * (d {}^{3}\mathbf{U}_{2})$ reaction for pionia atom			
250 MeV/u	NP1312-RIDF34RI	DIgKIP3	11, 11e (<i>a</i> , 11e) reaction for pionic atom			
¹⁶ O		SHADAO	${}^{1}\mathbf{H}$ (¹⁶ O)			
250 MeV/u	NF1112-SHARAQ08	зпакад	Н,(О)			
	MS-EXP13	BigRIPS	RI-beam production in the region of $Z \sim 80$			
	NP1012-RIBF63	BigRIPS	⁸² Ga			
^{aa238} U	NP1012-RIBF61	ZeroDegree	132 Sn, 128 Sn			
345 MeV/u	NP1306-RIBF51R1	ZeroDegree	⁷⁰ Ni			
	DA14-02-02	BigRIPS	New isotope search ($Z \sim 33$ region)			
	NP1112-RIBF88R1	EURICA	¹⁷² Dy, ¹⁷⁰ Dy			
⁴⁸ Ca	NP1312-RIBF56R1	ZeroDegree	²⁴ O, ²² O, ²⁰ O			
345 MeV/u	NP1312-SAMURAI18R1	SAMURAI	¹⁹ B, ¹⁷ B, ¹⁴ Be, ¹¹ Li			
	DA14-02-03	BigRIPS	Drip line search for F, Ne, Na			

Table 1. List of the experimental programs and RI beams produced at the BigRIPS in 2014 (in chronological order).

*1 RIKEN Nishina Center

*² Department of Physics, Rikkyo University

Fig. 1 shows the nuclear chart, in which all the isotopes produced at the BigRIPS from the commissioning in March 2007 to December 2014 are indicated along with the new isotopes observed at BigRIPS. The number of RI-beams produced amounted to approximately 350, and the number of new isotopes reached approximately 140. Production yields for more than 1,000 isotopes were obtained.

The number of experiments using RI beams at BigRIPS is tallied in Table 2, for various primary beams in each year. A total of 89 experiments have been performed so far.

References

- 1) T. Kubo: Nucl. Instr. Meth. B 204, 97 (2003).
- 2) H. Wang et al.: In this report.
- 3) N. Inabe et al.: In this report.
- 4) D. Kameda et al.: RIKEN Accel. Prog. Rep. 46, 20 (2013).
- 5) N. Fukuda et al.: In this report.
- 6) N. Inabe et al.: In this report.
- 7) Y. Shimizu et al.: In this report.

Fig. 1. RI beams produced at the BigRIPS separator from March 2007 to December 2014.

Table 2. Number of experiments using Ki beams at the bigKii 5.											
Year	²³⁸ U	¹²⁴ Xe	⁸⁶ Kr	⁷⁰ Zn	⁴⁸ Ca	¹⁸ O	¹⁶ O	^{14}N	⁴ He	^{2}H	Yearly total
' 07	4		1								5
' 08	2				4						6
' 09	3				3			3	1		10
' 10					10	1		2		1	14
' 11	4	2				2					8
` 12	6	3		1	4	6					20
'13	4	2				3	1				9
'14	11			1	3					1	17
Total	34	7	1	2	24	12	1	5	1	2	89

Table 2. Number of experiments using RI beams at the BigRIPS.