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Nuclear moment of inertia in super-normal phase transition region’
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The purpose of this paper is to derive the analytic
expression for the angular momentum (I) dependence
of the moment of inertia (Mol) from the microscopic
many-body theory both for even-even and odd-mass
nuclei. The I-dependence of Mol has been proved to
be essential in simulating triaxial, strongly deformed
(TSD) bands in a series of papers.'™

We adapt the approximation developed for the gap
(A) dependence of the ratio of Mol (J) to the rigid-
body value (J*8).56) Tt assumes that only large ma-
trix elements of single-particle angular momentum of
(Ju)ap contribute to J with a common excitation en-
ergy of (= €3 — €q), where ¢, denotes the single-
particle energy of the level . We apply this approxi-
mation to the gap equation including the Coriolis anti-
pairing (CAP) effect” through the second-order per-
turbation to the cranking term.%9)

When A is larger than half of the single-particle level
distance d, we can apply a definite integral for the gap
equation with the CAP effect. When A is smaller than
half of d, we propose the finite sum method with the
picket-fence approximation for the level distribution.
In this case, it is proved that A never tends to zero,
and there is no sharp phase transition from the super-
conducting state to the normal state. Neglecting the
higher order in 2A/§ for the case A < d/2 (finite sum
method), we express Mol as an analytic function of I.

In Fig. 1, we compare the approximate solution be-
tween even-even and odd-mass nuclei as functions of I
measured from the band-head angular momentum I.
Usually, Iy = 0 for even-even nucleus, while Iy # 0
for odd-mass nucleus, for example, Iy = 13/2 for the
TSD yrast band in '3Lu.'®) We choose the single-
particle energy for a valence nucleon as gy = 0.6 MeV
above the Fermi surface, and the initial pairing gap at
I=Ip for odd mass as 0.6 MeV, smaller than 0.8 MeV
for even-even nucleus (blocking effect). The blocking
effect reduces the starting value of A and increases
that of the Mol. In odd-mass case, there is a term
that correlates the single-particle state of ¢ with «
through (j,)2,. The matrix element of (j;)?, is cho-
sen to be 12 for ¢, > &4 and 10 for e, < &y. The
other parameters are the same as those for the even-
even case. We have started both approximate solutions
with A = 0.15 MeV corresponding to I—Iy ~15, while
d = 0.4 MeV.

As is seen in Fig. 1, the main difference between
even-even (dashed line) and odd-mass (solid line) nu-
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Fig. 1. Comparison of the ratio J/J"® in the approximate
sum method as functions of I-Iy for even-even (dashed
line) and odd-mass (solid line) nuclei.

clei is from the blocking effect. Then, both curves in-
crease gradually, and approach the value 1. The Mol
of odd-mass case is chosen to be slightly larger than
that of the even-even case. The curves become con-
vex upward before they reach to rigid-body values.
This upward convexity is also necessary for explain-
ing the energy sequence of TSD bands.* For the case
of A > d/2 (definite integral), J goes to J'® around
I-Ip ~ 17 or 18 (sharp phase transition). Even in this
case, odd-mass nuclei show an upward convexity be-
fore the phase transition at I=17 ~ 18. Because of
larger Iy, the slow phase transition occurs at larger I
for odd-mass nuclei than for even-even nuclei.
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