A_N of forward neutron production in $\sqrt{s}=200$ GeV polarized proton-nucleus collisions in the PHENIX experiment

M. $\mathrm{Kim}^{*1,*2}$ for the PHENIX collaboration

The first attempt to collide a polarized proton and a nucleus was executed at RHIC in Run15. This provides a unique opportunity to study the totally unexplored reaction mechanism of $p^{\uparrow}+A$ at high energy. We report the first asymmetry measurement of forward (6.8 < η < 8.8) neutron results from p + Al, and p + Au. The observed asymmetries showed unexpectedly large values and strong A-dependence.

The single transverse spin asymmetry, A_N , is written as

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \tag{1}$$

where \uparrow and \downarrow represent the spin directions of incident protons. In terms of scattering amplitudes, the condition for nonzero A_N is

$$A_N \propto Im\{\phi_{\rm filp}^*\phi_{\rm nonfilp}\sin\delta\} \neq 0 \tag{2}$$

where $\phi_{\text{filp}}^*(\phi_{\text{nonfilp}})$ is the spin flip (nonfilp) amplitude, and δ is a relative phase between the two amplitudes.

In 2011, a one pion exchange (OPE) model that well describes the cross section and A_N of forward neutron production from the PHENIX data¹⁾ for $\sqrt{s}=200$ GeV p+p collision was published²⁾. The model describes the spin flip amplitude by pion exchange and the non-spin flip amplitude mainly by the a1-Reggeon exchange. As a consequence, the model satisfactory reproduced the experimental A_N data.

Fig. 1 shows a preliminary plot of the Run15 forward neutron A_N results. The red points are A_N of ZDC (zero degree calorimeter, a neutron detector) inclusive measurements. They show unexpectedly strong mass number (A) dependence; $A_N^{p^{\uparrow}+Au}$ is 3 times larger than $A_N^{p^{\uparrow}+p}$, and they have opposite sign.

The observed A dependence immediately eliminates naive expectations such as isospin symmetric effects, which do not change the sign of A_N with increasing number of protons and neutrons.

Although electromagnetic interaction was not even considered in p+p, it may not be ignorable in p+A because of the smallness of the -t range (< 0.5GeV/c^2) of the measurements. Without full description, equation 2 is thus modified as

$$A_N \propto \phi_{\rm filp}^{\rm EM} \phi_{\rm nonfilp}^{\rm EM} \sin\delta_1 + \phi_{\rm filp}^{\rm EM} \phi_{\rm nonfilp}^{\rm had} \sin\delta_2 + \phi_{\rm filp}^{\rm had*} \phi_{\rm nonfilp}^{\rm had*} \sin\delta_3 + \phi_{\rm filp}^{\rm had*} \phi_{\rm nonfilp}^{\rm had} \sin\delta_4$$
(3)

where "EM" stands for electromagnetic interactions,

Fig. 1. Forward neutron A_N ploted as a function of atomic mass number with BBC correlations in $\sqrt{s} = 200$ GeV p + p, p + Al, and p + Au collisions.

"had" stands for strong interaction, and from δ_1 to δ_4 are relative phases. The majority of the electromagnetic process should be given by $\gamma^* p \to \Delta^+ \to n + \pi^+$ where γ^* is supplied from the EM field of the nucleus. The second and third terms are known as Coulomb nuclear interference (CNI), which is observed to cause $\lesssim 5\%$ asymmetry in the elastic scattering in p + p, and p + C processes³⁾. According to an MC simulation, Δ^+ decay products are predicted to be more forward boosted as compared to hadronic interactions⁴). In order to suppress competing effects, a correlation study was carried out using beam beam counters (BBCs, $3.1 < \eta < 3.9$). Since the most of neutron and pion pairs decayed from Δ^+ via the EM process events pass through the BBC hole, requiring/vetoing activities in BBC can suppress/enhance contributions from the EM terms in equation 3. The green points in Fig. 1 denote A_N with BBC activities, and the blue points denote A_N without BBC activity. We can see a clear correlation between the A_N and BBC activities.

There can be other processes that are not discussed here. Theoretical development is underway to explain this interesting discovery.

References

- 1) A. Adare et al., Phys. Rev. D 88, 032006 (2013).
- B. Z. Kopeliovich, I. K. Potashnikova, Ivan Schmidt, Phys. Rev. D 84, 114012 (2011).
- 3) I. G. Alekseev et al., Phys. Rev. D 79, 094014 (2009).
- 4) G. Mitsuka, Eur. Phys. J. C **75**:614 (2015).

^{*1} RIKEN Nishina Center

 $^{^{\}ast 2}$ $\,$ Department of Physics and Astronomy, Seoul National University