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Standard-model prediction for direct CP violation in K → ππ decays

C. Kelly∗1 for the RBC and UKQCD collaborations

A first-principles calculation of the amount of direct
CP-violation in the Standard Model has long been a
goal of the particle physics community. Utilizing re-
cent computational and theoretical advances, the RBC
& UKQCD collaborations have performed the first re-
alistic determination of this quantity.

Direct CP-violation occurs in the decays of neutral
kaons into two pions and is parameterized by a quan-
tity ǫ′, which is very small (O(10−6)) in the Standard
Model and therefore offers a sensitive probe for the new
physics expected to account for the preponderance of
matter over antimatter in the observable universe.

In K → ππ decays, the final ππ state can have
isospin quantum numbers of either I = 2 or 0, and ǫ′

manifests as a difference in the complex phases of the
corresponding amplitudes, A2 and A0. These ampli-
tudes receive significant contributions from hadronic-
scale QCD effects, necessitating the use of lattice QCD.
Such calculations require powerful computers, in our
case the IBM Blue Gene/Q supercomputers at RBRC,
ANL and Edinburgh University, and would otherwise
take several thousand years on a typical laptop.

Our most recent determination of A2
1) was per-

formed with large physical volumes, physical pion
masses and energy-conserving kinematics. We mea-
sured A2 with two different lattice spacings, thereby
enabling a continuum limit to be performed. We ob-
tained a very precise result: Re(A2) = 1.50(4)(14) ×
10−8 and Im(A2) = −6.99(20)(84)× 10−13, where the
errors are statistical and systematic, respectively. The
latter arise mainly from the use of perturbation theory
in the renormalization of the underlying lattice matrix
elements, and can be reduced by improved perturba-
tive calculations or by renormalizing at higher energies.

Calculating A0 is significantly more challenging, re-
quiring novel techniques for statistical error reduction
and for measuring with energy-conserving kinematics.
Our ground-breaking calculation, reported in Physi-
cal Review Letters2), is the first ab initio determina-
tion of A0 with controllable errors. The calculation
was performed on a single lattice with a somewhat
coarse lattice spacing but a large physical volume, re-
sulting in controlled finite-volume errors (∼7%) but
relatively large discretization errors (∼12%). Never-
theless the largest systematic errors are again associ-
ated with the perturbative truncation in the renormal-
ization factors (∼15%) and Wilson coefficients (12%).
We are presently working to raise the renormalization
scale in order to reduce these errors.

As part of the calculation we also measure the I = 0
ππ-scattering phase-shift at the physical kaon mass,
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Fig. 1.: The Q2 and Q6 three-point functions, plotted
in lattice units as functions of tππ − tQ, with the time
dependence removed. The horizontal lines show the
central value and errors.

for which we obtain δ0 = 23.8(4.9)(1.2)◦, which is
roughly 2.7σ smaller than phenomenological expec-
tations3,4). This is possibly due to the existence
of excited-state contamination hidden by the rapidly
diminishing signal-to-noise ratio; more statistics are
needed to confirm this hypothesis.

For the I = 0 K → ππ amplitude, we obtained

Re(A0) = 4.66(1.00)(1.26)× 10−7 GeV (1)

Im(A0) = −1.90(1.23)(1.08)× 10−11 GeV (2)

where the errors are statistical and systematic, respec-
tively. Our value for Re(A0) agrees with the experi-
mental value of 3.3201(18)×10−7 GeV and serves as a
test of our method. Im(A0) was heretofore unknown.
In Fig. 1 we plot the matrix elements Q2 and Q6

which comprise the dominant contributions to the real
and imaginary parts of A0, respectively.
Combining our lattice values for Im(A2) and Im(A2)

with the more precise experimental determinations of
the real parts, we obtain the following result.
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= 1.38(5.15)(4.59)× 10−4 , (4)

which is 2.1σ below the experimental value 16.6(2.3)×
10−4. While currently in broad agreement, the possi-
bility of resolving a discrepancy is clear motivation for
continued study. With continued effort we expect that
a 10% error relative to the measured value of Re(ε′/ε)
can be achieved within 5 years.
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