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Dipolar quantization and the infinite circumference limit of 2d CFT1

T. Tada*!

We elaborate on our previous work?, where a new
term dipolar quantization was introduced, and further
argue that adopting Lo — (L1 + L_1)/2 as the Hamil-
tonian yields an infinite circumference limit in two-
dimensional conformal field theory. One of the phys-
ical significances of this new Hamiltonian is that the
time translational vector field coincides with the elec-
tric field of an electric dipole located at z = 1, as op-
posed to in the ordinary radial quantization case. The
new theory then exhibits a continuous and strongly
degenerated spectrum as well as the Virasoro algebra
with a continuous index.

First, let us define the following “charges”:
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where T'(z) = T,,(z) is the holomorphic part of the
energy-momentum tensor of the original CFT. Fur-
ther, the integration is performed along the path where
the Euclidean time t assumes a constant value. The
relationship between the Euclidean time ¢ and the z
coordinate is best summarized by introducing a new
coordinate w as
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where s represents the Euclidean space part. Then,
the following relations are imposed:
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Now we can define L,; by choosing an appropriate value
of g(z). In particular, for k = 0, we have the expression
for the Hamiltonian for g(z) below corresponding to
the case for the ordinary radial quantization and for
the dipolar quantization:
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One can then calculate the commutation relations
between L,.’s as follows:
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Here, for g(z) = —(z_;)z, k assumes all the real val-

ues, while  is an integer for g(z) = z. By using this
commutation relation with the Hamiltonian

H =Ly +Zo, (7)

where £ stands for a member of another set of similar
“charges”, one can construct a state with an arbitrary
value of energy in the following manner. First, consider
an eigenstate of £y with an eigenvalue o and with an
additional index ¢ labeling a possible degeneracy:
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In this case, operating on |, o) with £, yields
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Thus, starting from the vacuum or any other energy
eigenstate, we can construct an eigenstate for £y with
an arbitrary eigenvalue because x can assume any real
value.

Further, one can show that
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where T stands for the Hermitian conjugation. One
of the idiosyncrasies we find in this formulation is a
different inner product of the Hilbert space. For the
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choice of g(z) = —**5~, the following holds:

(L)' = Ly, (Lo)'=2L_; — Ly,
(L)) = Ly —4Lo+4L_,.

Equation (13) shows that the operations of the Her-
mitian conjugation operations in dipolar quantization
on L_q1,Ly and L, are closed among themselves. In
addition, they definitely assume a different form from
those in radial quantization. Nonetheless, if we com-
pute the Hermitian conjugate for the combination
Lo—(L1+L_1)/2, which is the Hamiltonian for dipolar
quantization, it proves to be Hermitian (in the sense
of dipolar quantization):
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Thus, we presented a new conformal symmetric quan-
tum system with novel Hamiltonian and Hilbert space.
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