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Revision of the brick wall method for calculating the black hole
thermodynamic quantities†

F. Lenz,∗1,∗3 K. Ohta,∗2 and K.Yazaki∗3

The brick wall method was proposed by t’Hooft1)

for calculating the contributions of a scalar field to the
thermodynamic quantities of black holes, and it has
become a common tool for studying thermodynamic
properties in the spaces with horizons. We examine
the method in Rindler space, which has been often
used as a near horizon approximation for black holes,
by developing an accurate numerical method for the
calculation. We find that the previous works1–3) over-
estimated the partition function and the entropy by
almost 2 orders of magnitude. The origin of the dis-
crepancy between our results and theirs is clarified by
repeating the calculations of the latter in our frame-
work. We also carry out the analogous studies for the
scalar field in de Sitter space and confirm that our
method is applicable to the important case of spheri-
cally symmetric spaces.

Rindler space is defined by the following coordinate
transformation from the Minkowski space.

t, x,x⊥ → τ, ξ,x⊥ :

t(τ, ξ) =
1

a
eaξ sinh aτ, x(τ, ξ) =

1

a
eaξ cosh aτ, (1)

where a is the acceleration of a particle at ξ = τ = 0
(x = 1

a , t = 0) in Minkowski space. In the following
calculation, we use a = 1, measuring all quantities in
units of powers of a. A noninteracting scalar field with
mass m satisfies the equation of motion,

(∂2
τ − ∂2

ξ − (∇2
⊥ −m2)e2ξ)ϕ(τ, ξ,x⊥) = 0. (2)

The solution vanishing asymptotically at ξ → ∞ is

ϕ(τ, ξ,x⊥) = e−iωτeik⊥x⊥Kiω(
√

m2 + k2⊥e
ξ), (3)

where K is the MacDonald function.
In order to calculate the thermodynamic quantities,

we restrict the system in the transverse directions to a
square with area A using the periodic boundary condi-
tion in the usual way. The brick wall method uses the
Dirichlet boundary condition at ξ0 with the distance
from the horizon l = eξ0 on the order of the Planck
length, lP . The eigenvalue equation for ω is

Kiω(
√

k2⊥ +m2eξ0) = 0, (4)

which results in discrete spectra ωn(k⊥), n = 1, 2, . . .
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for each k⊥. The partition function is then given by

lnZ(β) = − A
2π

∞∑
n=1

∫ ∞

0

k⊥dk⊥ ln(1−e−βωn(k⊥)),(5)

where β = 2π at the Unruh temperature.
In the previous works, the eigenvalues of ω are ob-

tained by the WKB approximation and the sum over n
for the partition function (5) is replaced by the integral
from 0 to ∞ under the assumption that many n’s con-
tribute to the sum, leading to the well known closed ex-
pressions for the thermodynamic quantities1–3) in the
case of a massless scalar field. We have solved the
equation for m = 0 numerically with high accuracy
and found that only a small number of n’s contribute
to the sum with n = 1 term dominating at the Un-
ruh temperature. The origin of the overestimation in
the previous works is the contribution of the region
0 ≤ n < 1, where the spectrum is absent.

The results of our calculation for the partition func-
tion lnZ and the entropy S = (1−β∂β) lnZ at the Un-
ruh temperature based on the numerical solutions of
eq.(4) are shown in TABLE I together with the closed
expressions of the previous works (WKB). They are
given in units of A/4l2 which equals the Beckenstein-
Hawking entropy for l = lP . Our result for lnZ with
only the n = 1 term in (5) is also shown, demonstrat-
ing the dominance of this term. The previous works
are seen to overestimate lnZ by 68 and S by 37.

TABLE I lnZ and S in units of A/4l2

lnZ (n = 1) lnZ (total) S
eq.(4) 1.27× 10−5 1.30× 10−5 9.68× 10−5

WKB 1/360π 1/90π

Another important difference between our calcula-
tion and the previous ones is that ours is sensitive to
the boundary condition at the brick wall because of
the sensitivity of eigenvalues for small n’s while the
previous ones are insensitive owing to the assumption
that many n’s contribute to the sum in equation (5)

The dominance of the n = 1 mode implies that the
longitudinal degrees of freedom are practically frozen
at the Unruh temperature and the thermodynamic
properties are determined by the transverse degrees
of freedom.
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Direct detection of composite dark matter via electromagnetic

polarizability†

E. T. Neil∗1,∗2 for the LSD Collaboration

Direct-detection experiments are becoming increas-
ingly sensitive, quickly approaching the expected ir-
reducible background from coherent scattering of cos-
mic neutrinos1). Most dark matter candidates which
couple to the visible sector through Standard Model
force carriers have been ruled out by several orders of
magnitude. However, models of composite dark matter

provide an intriguing exception.
A dark sector consisting of electroweak-charged

fermions and a new strongly-coupled gauge force can
give rise to neutral composite bound states, which will
nevertheless interact with the Standard Model through
photon and Z-boson exchange. These exchanges are
described by momentum-dependent electromagnetic
form factors, which are highly suppressed for small
momentum transfers (typical in direct-detection exper-
iments.)

Making predictions within composite dark matter
models can be challenging, due to the strongly-coupled
nature of the underlying interactions. Lattice simula-
tions provide an important tool to give quantitative
information about such theories. Here we consider
a specific model known as “Stealth Dark Matter”2),
based on a dark confining SU(4) gauge theory. Due
to symmetry considerations, stealth dark matter has
the novel feature that its leading interaction with pho-
tons is through the dimension-7 electric polarizability
operator,

OF = CFB
∗B FµαF ν

αvµvν , (1)

where Fµν is the electromagnetic field-strength tensor,
B is the “baryon” composite dark matter field, and vµ
is the four-velocity of B. Because this is a two-photon
vertex, scattering of “stealth baryons” off of ordinary
nuclei thus involves a virtual photon loop, leading to an
order-of-magnitude nuclear uncertainty partly due to
the poorly constrained effects of nuclear excited states.

The unknown coefficient CF must be determined
by a non-perturbative lattice calculation. We gener-
ate a series of SU(4) gauge configurations with lattice
volume V = 323 × 64, and apply the standard back-
ground field method3) to study the polarizability and
determine CF . The “baryon” ground-state energy is
determined from a two-point correlation function in
the presence of an applied background electric field, E .
The polarizability operator induces a quadratic Stark
shift in the mass of the “baryon” proportional to CF ,
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Fig. 1. Predicted spin-independent xenon scattering cross

section per nucleon for stealth dark matter due to the

electric polarizability (purple band). The width of the

purple band indicates the uncertainty in the nuclear

two-photon matrix element. The top region (blue) is ex-

cluded by the LUX experiment4), while the left shaded

region (grey) is excluded by the LEP II bound on

charged mesons2). The bottom region (orange) shows

the expected coherent neutrino background1).

EB = mB + 2CF |E|
2 +O

(

E4
)

. (2)

Repeating the calculation of EB for several values of E
and fitting to this formula allows us to determine CF .
In units of the “baryon” mass MB, we find that

the value of CF is similar for SU(4) and SU(3)
gauge theories, obtaining CFM

3
B ≈ 1.3 at relatively

heavy fermion masses. This translates into the direct-
detection scattering cross section shown in Fig. 1. Al-
though the signal is strongly suppressed for heavy dark
matter, scaling as 1/M6

B, there remains an intriguing
window up to MB ∼ 1 TeV where this candidate may
still be detectable above the coherent neutrino back-
ground. Because interaction through the polarizability
scales as Z4/A2, where Z and A are the atomic and
mass numbers of the target, stealth dark matter would
provide a distinctive signature if a signal were found
in experiments using different nuclear targets.
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