Production of low-energy 4.17 MeV/nucleon 9C beam with polyethylene degrader at RIPS

Theoretically, four low-lying 10N levels are expected as broad and overlapping resonances$^{1-3}$. The level structure of 10N is very important to understand resonances in 10Li because 10N and 10Li are the mirror nuclei expected to have a similar structure. The information of 10Li levels can be used to constrain the 9Li+n potential, which is required for constructing the three-body model of the borromean nucleus 11Li.

We proposed to measure the excitation function of the (differential) cross section and vector analyzing power (A_v) for the 9C+p reaction to determine these broad resonances3. The thick-target method in inverse kinematics4 will be used for the measurement. In this method, the excitation functions for the cross section and A_v will be scanned with a single beam energy utilizing the energy loss of the beam particle in the target. The range of center-of-mass energy is set to 1–5 MeV to cover the theoretically expected ground state of 10N and several excited states.

In September 2015, a test 9C+p resonant scattering experiment was conducted at RIPS, where the production of a low-energy 9C beam was tested and the excitation function was measured with an unpolarized polyethylene $(\text{CH}_2)_n$ target. A 9C beam was produced using a 70-MeV/nucleon 12C primary beam with an intensity of 400 particle-nA and a 4-mm Be primary target at RIPS. The configuration of RIPS is described in Ref. [5]. A wedge-type degrader with $d/R = 0.8$, where d is the central thickness of the degrader and R is the range of 9C with a central momentum, was used at F1 to degrade the 9C beam energy. In order to realize a high transmission efficiency of 9C from F1 to F2, a conventional aluminum F1 degrader was replaced with a new $(\text{CH}_2)_n$ degrader, because the multiple scattering effect, which is serious at $d/R \sim 0.8$, can be highly reduced with a low-Z material.

The central thickness of the $(\text{CH}_2)_n$ degrader was set to 316 mg/cm2 so that the energy loss of the 9C beam was equal to the energy loss in the standard Al degrader with 444 mg/cm2 thickness. The wedge angle of the degrader was set to 5 mrad based on the LISE++ code6 calculation. The intensity of the 9C beam was measured at F2 for the two cases using the standard Al degrader and the $(\text{CH}_2)_n$ degrader at F1. The latter was 1.8 times higher than the former, which shows improvement of transmission using the low-Z material for the F1 degrader.

The 9C beam energy was determined using the time-of-flight (ToF) measured between a 0.5-mm-thick plastic scintillator installed at F2 and one of two position-sensitive Parallel Plate Avalanche Counters (PPAC) at the F3 focal plane. The energy of the 9C beam was precisely controlled by a rotatable thin polyethylene degrader installed at the F2 focal plane. The correction for the energy loss in the PPACs was calculated based on the SRIM code7. The beam energy determined in this analysis was 4.17 MeV/nucleon with an energy spread of $\sigma = 0.73$ MeV/nucleon.

The identification of the secondary beam particles was conducted based on the RF and ToF information. Thus the measured purity and intensity of the 9C beam were 15% and 2.4×10^4 pps at F3, respectively. These purity and intensity values are sufficiently high for the planned resonant scattering experiment.

In conclusion, a 4.17-MeV/nucleon 9C beam was successfully produced with a thick F1 degrader at RIPS. In the experiment, the transmission of the degraded beam was improved by suppressing multiple scattering effects in the thick F1 degrader using a low-Z material.

References