Production of low-energy 4.17 MeV/nucleon ${}^{9}C$ beam with polyethylene degrader at RIPS

E. Milman,^{*1,*3} T. Teranishi,^{*2} S. Sakaguchi,^{*1,*2} K. Abe,^{*4} Y. Akiyama,^{*1,*2} D. Beaumel,^{*1,*5}

S. Chebotaryov,^{*1,*3} T. Fukuta,^{*1,*2} A. Galindo-Uribarri,^{*6} S. Hayakawa,^{*4} S. Hwang,^{*7} Y. Ichikawa,^{*1}

N. Imai,^{*4} D. Kahl,^{*4} R. Kaku,^{*1,*2} T. Kaneko,^{*1,*8} D. Kim,^{*1,*9} W. Kim,^{*3} N. Kitamura,^{*4} Y. Norimatsu,^{*1,*2} E. Romero-Romero,^{*6} D. Sakae,^{*1,*2} Y. Sakaguchi,^{*4} M. Sasano,^{*1} K. Tateishi,^{*1} T. Uesaka,^{*1} K. Yamada,^{*1,*8}

and H. Yamaguchi^{*4}

Theoretically, four low-lying ¹⁰N levels are expected as broad and overlapping resonances^{1,2)}. The level structure of ¹⁰N is very important to understand resonances in ¹⁰Li because ¹⁰N and ¹⁰Li are the mirror nuclei expected to have a similar structure. The information of ¹⁰Li levels can be used to constrain the ⁹Li+n potential, which is required for constructing the three-body model of the borromean nucleus ¹¹Li.

We proposed to measure the excitation function of the (differential) cross section and vector analyzing power (A_y) for the ${}^9C+p$ reaction to determine these broad resonances³⁾. The thick-target method in inverse kinematics⁴⁾ will be used for the measurement. In this method, the excitation functions for the cross section and A_y will be scanned with a single beam energy utilizing the energy loss of the beam particle in the target. The range of center-of-mass energy is set to 1-5 MeV to cover the theoretically expected ground state of ${}^{10}N$ and several excited states.

In September 2015, a test ⁹C+p resonant scattering experiment was conducted at RIPS, where the production of a low-energy ⁹C beam was tested and the excitation function was measured with an unpolarized polyethylene ((CH₂)_n) target. A ⁹C beam was produced using a 70-MeV/nucleon ¹²C primary beam with an intensity of 400 particle-nA and a 4-mm Be primary target at RIPS. The configuration of RIPS is described in Ref. [5]. A wedge-type degrader with d/R at 0.8, where d is the central thickness of the degrader and Ris the range of ⁹C with a central momentum, was used at F1 to degrade the ⁹C beam energy. In order to realize a high transmission efficiency of ⁹C from F1 to F2, a conventional aluminum F1 degrader was replaced with a new $(CH_2)_n$ degrader, because the multiple scattering effect, which is serious at $d/R \sim 0.8$, can be highly reduced with a low-Z material.

The central thickness of the $(CH_2)_n$ degrader was set to 316 mg/cm² so that the energy loss of the ⁹C beam was equal to the energy loss in the standard Al de-

*2 Department of Physics, Kyushu University

grader with 444 mg/cm² thickness. The wedge angle of the degrader was set to 5 mrad based on the LISE++ code⁶) calculation. The intensity of the ⁹C beam was measured at F2 for the two cases using the standard Al degrader and the $(CH_2)_n$ degrader at F1. The latter was 1.8 times higher than the former, which shows improvement of transmission using the low-Z material for the F1 degrader.

The ⁹C beam energy was determined using the timeof- flight (ToF) measured between a 0.5-mm-thick plastic scintillator installed at F2 and one of two positionsensitive Parallel Plate Avalanche Counters (PPAC) at the F3 focal plane. The energy of the ⁹C beam was precisely controlled by a rotatable thin polyethylene degrader installed at the F2 focal plane. The correction for the energy loss in the PPACs was calculated based on the SRIM code⁷). The beam energy determined in this analysis was 4.17 MeV/nucleon with an energy spread of $\sigma = 0.73$ MeV/nucleon.

The identification of the secondary beam particles was conducted based on the RF and ToF information. Thus the measured purity and intensity of the ${}^{9}C$ beam were 15% and 2.4×10^{4} pps at F3, respectively. These purity and intensity values are sufficiently high for the planned resonant scattering experiment.

In conclusion, a 4.17-MeV/nucleon ${}^9\mathrm{C}$ beam was successfully produced with a thick F1 degrader at RIPS. In the experiment, the transmission of the degraded beam was improved by suppressing multiple scattering effects in the thick F1 degrader using a low-Z material.

References

- S. Aoyama, K. Kato, K. Ikeda, Phys. Lett. B 414, 13 (1997).
- 2) E. Caurier et al., Phys. Rev. C 66, 024314 (2002).
- T. Teranishi, S. Sakaguchi, T. Uesaka et al., AIP Conf. Proc. 1525, 552 (2013).
- 4) K.P. Artemov et al., Sov. J. Nucl. Phys. 52, 408 (1990).
- 5) T. Kubo et al., Nucl. Instr. Meth. B **70**, 309 (1992).
- O. B. Tarasov, D. Bazin, Nucl. Instr. Meth. B 266, 4657 (2008).
- J.F. Ziegler, M.D. Ziegler, J.P. Biersak, Nucl. Instr. Meth. B 268, 1818 (2010).

^{*1} RIKEN Nishina Center

^{*3} Department of Physics, Kyungpook National University

^{*4} CNS, The University of Tokyo

^{*5} IPN Orsay

^{*&}lt;sup>6</sup> Oak Ridge National Laboratory

^{*7} JAEA

^{*8} Department of Physics, Toho University

^{*9} Department of Physics, Ewha Womans University