Study on background suppression of charged particles
using GARIS-II filled with He-H\textsubscript{2} mixture

D. Kaji,1 K. Morimoto,1 S. Yamaki,1,2 H. Haba,1 Y. Komori,1 S. Yano,1
R. Aono,1,3 Y. Namba,1,3 and S. Goto1,3

The performance of a gas-filled recoil ion separator (GARIS-II) has been evaluated using various asymmetric fusion reactions1-3. The feasibility of a high transmission under a low-background condition is a key issue for superheavy elements (SHEs) produced with a low cross section of pb-order. In previous work1,3, it was found that GARIS-II filled with a He-H\textsubscript{2} mixture as a filled gas is promising to suppress background particles. To aid future study of SHEs, the usefulness of a He-H\textsubscript{2} mixture was investigated further in this work. As a typical example, the results for 218,217Pa, which were produced via the reaction of 197Au(24Mg,xn) [x=3,4], are given here.

The products of 218,217Pa were separated in-flight from projectiles and other by-products using the GARIS-II, and then they were guided into a double sided silicon detector after passing through a time-of-flight detector. The separator was filled with a He-H\textsubscript{2} mixture with various 2H mixing ratios (0, 10, 20, and 30\%). The gas pressure was maintained at 53 Pa. Recently, a new gas-mixing system, shown in Fig. 1, was developed as the previous system used a commercial gas with fixed mixing ratio. This system enables the mixing ratio to be tuned under constant pressure. The system was well calibrated by a gas analyzer.

The reaction products of 218,217Pa, which were assigned to \textalpha-transitions of 9.616 and 8.337 MeV with half-lives of 113 μs and 3.8 ms respectively as shown in Fig. 2, were measured by varying the fraction of 2H composition from 0 to 30\%. The reaction products of 217,218Pa including long-lived isotopes of 215,214Ac are clearly identifiable with an increasing mixing ratio. The values of the equilibrium charge state \textseven, which are deduced from the optimum magnetic rigidity \textit{Bp} values, are plotted against the 2H composition in Fig. 3. The \textseven in pure 2H\textsubscript{2} is estimated to be 3.80 using empirical systematics, obtained using a Dubna gas-filled recoil separator DGFRS4. Interpolated values of \textseven between 4.47 and 3.80 in the case of pure 2He and 2H\textsubscript{2} are indicated as a broken line in Fig. 3. It seems that the measured \textseven values agree well with the linear interpolation of the DGFRS.

![Fig. 1. New gas control system for GARIS-II filled with He-H\textsubscript{2} mixture.](image)

![Fig. 2. Two-dimensional scatter plots, obtained by a time-position correlation analysis, of decay time against decay energy. Fractions of 2H\textsubscript{2} composition are (a) 0\%, (b) 10\%, and (c) 30\%.](image)

![Fig. 3. Equilibrium charge state of 217Pa ions moving in a He-H\textsubscript{2} mixture. The broken line is the linear interpolation between the experimentally obtained \textseven of 4.47 and the estimated \textseven of 3.80 from the DGFRS's work4.](image)

References
2) D. Kaji et al., RIKEN Accel. Prog. Rep 47, 213 (2014).
3) D. Kaji et al., RIKEN Accel. Prog. Rep 46, 189 (2013).

1 RIKEN Nishina Center
2 Department of Physics, Saitama University
3 Graduate school of Science and Technology, Niigata University