μ SR study on the Kondo semiconductor (Ce_xLa_{1-x})Ru₂Al₁₀

N. Adam, *1,*2 H. Tanida, *1,*3 M. Sera, *3 T. Nishioka, *4 and I. Watanabe *1,*2

The Kondo semiconductors CeT_2Al_{10} (T = Fe, Ru, and Os) have been attracting much attention because of their unusual antiferromagnetic (AFM) ordering at $T_0 \sim 30$ K for T = Ru and Os $^{(1,2)}$ Below T_0 , the AFM moment $(m_{\rm AF})$ is parallel to the orthorhombic c $axis^{3,4}$ although the easy magnetization axis is the a axis with a large magnetic anisotropy, $\chi_a \gg \chi_c \gg \chi_b$. By substituting magnetic Ce $(4f^1)$ with nonmagnetic La $(4f^0)$, a further unusual ordered state is realized; the direction of $m_{\rm AF}$ is switched from the c to b axis, although the *b* axis is the magnetic hardest axis.⁵⁾ Nonetheless, T_0 is not significantly reduced, and the Kondo semiconducting behavior is maintained by the substitution. On further reducing the Ce concentration, T_0 decreases smoothly and disappears at a critical Ce concentration of $x \sim 0.45$. This indicates that the interaction of the transition is long-ranged, like the RKKY interaction. However, the transition temperature, $T_0 \sim 30$ K, is too high for an usual magnetic transition because (1) the $T_{\rm N}$ of isomorphous GdT₂Al₁₀, which is expected to show the highest ordering temperature in a series of RT_2Al_{10} systems, is only 16–18 K, and (2) the distance between the nearest Ce sites is greater than 5 Å. These imply that magnetic interactions are not key parameters for the transition, but there could be an unknown parameter related to the c-f hybridization effect.

Previously, we examined the microscopic magnetism of CeRu₂Al₁₀ and the related Rh-doped one by means of μ SR in RAL,⁶⁾ together with numerical calculations by using the density functional theory.⁷⁾ By substituting Ru with Rh which possesses an extra 4d electron compared to Ru, electronic properties are drastically changed, and $m_{\rm AF} \parallel a$ is realized instead of $m_{\rm AF} \parallel c.^{8)}$ From our results, we have concluded that (1) the critical Rh concentration is less than 3%; (2) there are two muon stopping sites, which is supported by the DFT calculation; (3) internal fields, $H_{\rm int}$ ($H_{\rm Large}$ and $H_{\rm Small}$), are very sensitive to spin structure; and (4) transferred hyperfine field could be essential for their non-mean field like behavior.

In order to examine the microscopic magnetism in $(\text{Ce}_x \text{La}_{1-x}) \text{Ru}_2 \text{Al}_{10}$, we performed zero-field μSR using randomly mounted small single crystals. Figure 1 shows the preliminary results of the temperature dependence of H_{int} in $(\text{Ce}_{0.9}\text{La}_{0.1}) \text{Ru}_2 \text{Al}_{10}$. The data

Fig. 1. Preliminary results of the temperature dependence of the internal magnetic fields in $(Ce_{0.9}La_{0.1})Ru_2Al_{10}$. The data for x = 1 are also shown for comparison.⁶) Dotted curves are guides to the eyes.

for x = 1 are also shown for comparison.⁶) For x = 1, H_{Large} exhibits the usual mean-field behavior, whereas H_{Small} shows non-mean-field behavior. For x = 0.9, a similar behavior is obtained in H_{Large} . On the other hand, H_{Small} exhibits a behavior significantly different from that of H_{Small} for x = 1. Thus, H_{Large} is robust, while H_{Small} is strongly affected by the substitution. Considering the mean-field behavior of H_{Large} , the development of $m_{\rm AF}$ should be regarded a mean-field type. Thus, the non-mean field behavior of H_{Small} for x = 0.9 could also be related to the hyperfine anomaly. It should be noted that the temperature dependence of H_{Small} for x = 0.9 is very similar to that of H_{Large} in the Rh-doped CeRu₂Al₁₀, aside from a large difference in magnitude.⁶⁾ This could be a key to identify the muon sites and the origin of the hyperfine anomaly.

References

- 1) A. M. Strydom, Physica B 404, 2981 (2009).
- 2) T. Nishioka et al., J. Phys. Soc. Jpn. 78, 123705 (2009).
- D. D. Khalyavin et al., Phys. Rev. B 82, 100405(R) (2010).
- 4) H. Tanida et al., Phys. Rev. B 84, 233202 (2011).
- 5) H. Tanida et al., Phys. Rev. B 88, 045135 (2013).
- 6) H. Guo et al., Phys. Rev. B 88, 115206 (2013).
- N. Adam et al., J. Phys. Conf. Series. 551, 012053 (2014).
- R. Kobayashi et al., J. Phys. Soc. Jpn. 82, 093702 (2013).

^{*1} RIKEN Nishina Center

^{*2} Computational Chemistry and Physics Laboratory. Universiti Sains Malaysia

^{*3} ADSM, Hiroshima University

^{*4} Neutron Science Laboratory, ISSP, University of Tokyo

^{*5} Graduate School of Integrated Arts and Science, Kochi University