Production of 67Cu using the 70Zn(d,an)67Cu reaction

S. Yano,*1 H. Haba,*1 S. Shibata,*1 Y. Komori,*1 K. Takahashi,*1 Y. Wakitani,*2 T. Yamada,*2 and M. Matsumoto*2

Since 2007, we have distributed purified radioisotopes such as 66Zn and 109Cd prepared at the RIKEN AVF cyclotron for the purpose of contribution to society throughout industrial application of accelerator based-science. Copper-67 (half-life $T_{1/2} = 61.83$ h and β−-decay branch $I_{β−} = 100\%$) is one of the promising radioisotopes for radiotherapy and radiodiagnosis. Although several routes have been proposed for the production of 67Cu, the high-energy proton-induced reaction of 68Zn($p,2p$)67Cu has been used most often. In this route, however, a large-scale cyclotron is required to accelerate protons up to ~100 MeV, and a large contamination of the radionuclidal impurity of 64Cu is unavoidable in the 67Cu product. Further, the long-lived byproduct of 67Zn ($T_{1/2} = 244.06$ d) is also undesired in the recycle process of the enriched target material of 68Zn. Thus, we plan to produce 67Cu in the 70Zn(d,an)67Cu reaction, where small amounts of 64Cu and 68Zn are produced. In this work, for the future distribution of 67Cu, we investigated a procedure to prepare purified 67Cu in the 70Zn(d,an)67Cu reaction at the AVF cyclotron.

In the 70Zn(d,an)67Cu route, 66Ga can be produced from 66Zn isotopes such as 67Zn and 66Zn, which are contained in small amounts in the enriched 70Zn target. The γ-ray energies of 66Ga are identical to those of 67Cu, because 66Ga and 67Cu decay to the same excited levels of 67Zn by EC- and β−-decay, respectively. In addition, the half-life of 66Ga ($T_{1/2} = 3.26$ d) is almost the same as that of 67Cu. Thus, it is difficult to distinguish between 67Cu and 66Ga by γ-ray spectrometry. Also the expensive enriched isotope of 70Zn should be recovered for reuse. To develop a chemical procedure to remove 66Ga from 67Cu and to recover the rare 70Zn material, we first produced radiotracers of 67Cu, 66Ga, and 65mZn in the natZn(d,X) reactions by irradiating 24-MeV deuterons on a metallic natZn foil (nat: natural isotopic abundance; chemical purity: >99.99%; thickness: 71.4 mg cm$^{-2}$). The average beam intensity was 150 nA, and the irradiation time was 26 min. An enriched 70ZnO target (70Zn isotopic abundance: 96.87%; thickness: 327 mg cm$^{-2}$) was also irradiated with the 24-MeV deuterons in order to evaluate the production yield of 67Cu from the enriched 70Zn target. The average beam intensity was 18 nA, and the irradiation time was 56 min. After the irradiation, as shown in Fig. 1, Cu isotopes were separated from the natZn and 70ZnO targets through a two-step chromatographic separation using the Eichrom Cu resin and the Dowex 1X8 anion-exchange resin. We carried out the chemical procedure using the radiotracers of 67Cu, 66Ga, and 65mZn produced in the natZn(d,X) reaction. A high chemical yield of 97% was obtained for 67Cu. Decontamination factors of 66Ga and 65mZn from 64Cu were evaluated to be ~103 and >103, respectively. The recovery of >99% for 64Cu was high enough for recycling of the 70Zn target material. Figure 2 shows the γ-ray spectrum of the purified 67Cu from the enriched 70Zn target. Under the present experimental condition, the production yield of 67Cu was 4.0 MBq μA$^{-1}$h$^{-1}$. The radioactivity ratio of $^{67Cu}/^{67Ga}$ was about 2×104 after the chemical separation. Based on the present results, we estimate that about 1 GBq of 67Cu could be distributed after 3-days irradiation of a metallic 70Zn target of 357-mg cm$^{-2}$ thickness with a 24-MeV and 10-μA deuteron beam, followed by 3 days for chemical separation and shipment.

![Fig. 1. Chemical separation procedure for 67Cu produced in the 70Zn(d,an)67Cu reaction.](image1)

![Fig. 2. γ-ray spectrum of the purified 67Cu from the enriched 70Zn target irradiated with the 24-MeV deuteron.](image2)

References
5) Eichrom technologies’ Product Catalog for 2013.