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Antiferromagnetic ordering in organic π − d hybrids [Pd(tmdt)2]
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Emergent phenomena in the systems of interacting
electrons are expected to be more diverse when elec-
trons are accommodated by multi-orbitals with dis-
tinctive characters. [M(tmdt)2], a family of organic
π−d hybrids, are multi-orbital correlated electron sys-
tems, where a transition metal ion, M , is coordinated
with organic ligands, tmdt, from both sides.1–3) The
orbitals near the Fermi level are a d-orbital in M and
π-orbitals in tmdt.4,5) The energy-level difference be-
tween the d and π orbitals depends on M , and leads
to the diverse ground states; paramagnetic metals with
appreciable electron correlations for M = Ni and Pt,
an antiferromagnetic (AF) metal (TN = 110 K) for M
= Au, and a one-dimensional AF Mott insulator (TN

= 13 K) for M = Cu.6–11)

For the M = Ni, Pt, and Pd compounds, the π and
d orbitals are well separated in terms of energy; their
conduction bands are composed of only π orbitals. Al-
though the Ni and Pt systems are paramagnetic met-
als as expected, we recently found that the Pd sys-
tem was exceptional. It showed a decrease in ESR
signal intensity and broadening of the NMR spectra
below 100 K.12,13) A broad peak appeared around 50
K in the temperature dependence of the NMR relax-
ation rate.13) These results suggest that an AF or-
dering inhomogeneously appears in the sample. The
inhomogeneously-ordered state might be a long-range-
ordered state, which cannot be explained by the band
calculation and implies the importance of the electron
correlation of the π-orbitals and/or spin-orbit coupling
in this system.

In order to achieve full confirmation of the appear-
ance of magnetic ordering and to investigate the mag-
netic ground state, we carried out zero-field (ZF) µSR
measurements on [Pd(tmdt)2] polycrystalline sample
in the DOLLY area at Paul Scherrer Institut. Figure
1(a) shows the ZF-µSR time spectra of [Pd(tmdt)2] at
various temperatures. It can clearly be seen that the
relaxation becomes faster at lower temperatures and
that the shape of the relaxation function changes with
temperature. At 50 K and 10 K, muon-spin precession
signals were observed. This provides clear evidence for
the appearance of a long-range-ordered magnetic state
in [Pd(tmdt)2] at least below 50 K. The slow relaxation
of the non-oscillating signal can originate from tempo-
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Fig. 1. (a)ZF-µSR time spectra of [Pd(tmdt)2] observed

at 10, 50, 100, and 150 K. (b) LF-µSR time spectra

observed at 10 K.

rally fluctuating fields and/or small static local fields.
To determine whether the spin state in the ground
state is static or not and to find the residual spin dy-
namics, we performed µSR measurements under a lon-
gitudinal field (LF). As shown in Fig. 1(b), the slowly
relaxing signal was suppressed and became nearly flat
on applying a field of 20 G. This indicates the existence
of a small static field, thus ruling out the temporally
fluctuating fields that are slower than the µSR time
scale (10−6

−10−11 sec). The small static field might
originate from the nuclear dipolar fields in a possible
paramagnetic volume within the sample. This suggests
that the magnetically-ordered state of [Pd(tmdt)2] is
a inhomogeneously-ordered state, which is consistent
with the preceding NMR and ESR results.
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