Li-ion diffusion in Li-ion battery material LiFe$_{1-x}$Mn$_x$PO$_4$

I. Umegaki,*1 H. Nozaki,*1 G. Kobayashi,*2 R. Kanno,*3 M. Månsson,*4 A. Berlie,*5 I. Watanabe,*5 and J. Sugiyama*1

For the development of on-board batteries, the Li-ion battery is required to operate at high voltages. For realizing a practical Li-ion battery, a solid solution of the olivine-type lithium iron/manganese phosphate (LiFePO$_4$ and LiMnPO$_4$) is used as the positive electrode material. Olivine lithium phosphate is superior in terms of stability and is a low cost material. The tetrahedron PO$_4$ is so stable that oxygen desorption hardly occurs. Compared to other positive electrode materials such as LiCoO$_2$, olivine lithium phosphate is produced at a low cost because it contains no transition metals. High charge/discharge voltage can be steadily obtained for the Li(Fe,Mn)PO$_4$ solid solution. It is noted that the LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0.7) solid solution is used for the realization of a practical Li-ion battery.

LiFePO$_4$ by μ^+SR$^1)$. However, we could not obtain information about Li diffusion for LiMnPO$_4$, because μ^+SR spectra were strongly affected by magnetic moment of Mn$^{2+}$. Although the diffusive nature of Lithium is represented in the dynamic Kubo-Toyabe (KT) type relaxed signal in zero field (ZF) μ^+SR measurements, the small changes in KT signal are hidden by fast relaxed signal caused by the magnetic moment of Mn$^{2+}$. In order to avoid the magnetic effect due to Mn$^{2+}$, we measured μ^+SR spectra on LiFe$_{1-x}$Mn$_x$PO$_4$ with smaller x to presume the Li diffusive nature in LiFe$_{1-x}$Mn$_x$PO$_4$ with larger x (Fig. 1).

In order to investigate Li-ion diffusion in the solid solution similar to the one used in the practical battery, we measured μ^+SR spectra on LiFe$_{0.2}$Mn$_{0.8}$PO$_4$. In x=0.8 samples, the ZF-μ^+SR spectrum is fitted by the sum of the exponentially relaxed static KT function and fast relaxation, assuming the volume fraction determined for smaller x as the initial value. Then, the ZF-μ^+SR spectrum exhibits dynamic KT function at temperatures above 150 K. By fitting the ZF- and LF-spectra with a dynamic KT function, the field fluctuation rate (ν), relaxation rate (λ) and the field distribution width (Δ) were obtained. For x=0.8, ν rapidly starts to increase and Δ starts to decrease at 150 K (Fig. 2). This indicates that Li-ion diffusion occurs above 150 K. The diffusion coefficient is estimated as $D_{Li} = 2.1 \times 10^{-10}$(cm2/s) at 300 K.

By utilizing ARGUS spectrometer to obtain a large asymmetry for the KT signal, we obtained additional data to the systematic results taken with EMU spectrometer for the solid solution, LiFe$_{1-x}$Mn$_x$PO$_4$ with $x=0.2 - 1$. There appers to be a peak in D_{Li} between x=0.6 and x=1 (Fig. 1). However, we cannot conclude that D_{Li} has a small peak around x=0.8 since we have measured only for x=0.6 and 0.9. We would like to study in detail the region between x=0.6 - 0.9, since the composition is very close to that used in a practical Li-ion battery.

We also measured μ^+SR spectrum on x=0 sample, however, the obtained data was unsatisfactory. It is reported in Ref. 1 that $D_{Li} = 3.6 \times 10^{-10}$(cm2/s) at 300 K. Since D_{Li} changes drastically between $x=0$ and 0.2, we need to try to confirm such large changes.

The activation energy E_a was estimated from the relation $E_a=k_B\ln(\nu)$ to be 53.0 meV for $x=0.8$. There may be a peak in E_a between $x=0.6$ and 1 (not shown).

Reference