Particle beam radiation of the ectomycorrhizal basidiomycete *Tricholoma matsutake* that produces the prized, but uncultivable, mushroom “matsutake”

H. Murata,*1 T. Abe,*2 H. Ichida,*2 Y. Hayashi,*2 T. Shimokawa,*1 H. Neda,*1 T. Yamanaka,*1 M. Sunagawa,*1 and A. Ohta*1

Tricholoma matsutake is an ectomycorrhizal basidiomycete that produces the economically important edible mushroom “matsutake” in association with Pinaceae plants. The annual, worldwide yield of matsutake is estimated to be 2,000 t, which represents a total retail value of over US$500 million. In Japan, the annual yield of matsutake in the past decade ranged from 50 to 150 t per year, which is much lower than previous annual yields, which reached 12,000 t in 1941. Such a concerning downward trend in the matsutake yield has also occurred elsewhere, including in South Korea, the northeastern provinces of China, and Bhutan.

Mushrooms are fruiting bodies (i.e., the sexual reproductive stage) that contain a tremendous amount of basidiospores. In general, homokaryotic basidiospores are produced after meiosis in dikaryotic hyphae, which result from mating between two monokaryotic hyphae unlike the wild-type (right) that are difficult to cultivate, as the ectomycorrhizal mushroom *Lycoperllum shimeji* is now commercially cultivated to produce the prized strains from nature that grow well in a barley-based spawn. Such *L. shimeji* strains were further bred to generate cultivars that were suitable for large-scale mushroom production. Therefore, the creation of strains that are suitable for fruiting, or even spawning like *L. shimeji*, is a key factor for the artificial cultivation of matsutake.

In the present study, we determined whether heavy particle beams could be used to isolate *T. matsutake* mutants. Because we previously obtained some mutants whose traits may be desirable for spawn cultivation and which exhibited a survival rate of ca. 30% following gamma-ray irradiation (500 Gy), we used Ar- and Fe-ions at radiation doses ranging from 0 to 500 Gy. Of these heavy ion beams, Ar irradiation (400–500 Gy) resulted in a survival rate of 12%, while Fe irradiation (large particles, 100–300 Gy) resulted in a survival rate of ca. 65%; following irradiation, some mutants exhibited abnormal mycelial morphologies on an agar plate at the first screening (Fig. 1). However, such mutant phenotypes reverted to the wild-type during the second screening. This phenomenon may be attributed to the fact that we picked a piece of mycelia, rather than a single hypha, wherein the survivor with the wild-type phenotype was mixed with, and eventually overtook, the mutant mycelia. Another issue is that the *T. matsutake* hypha is composed of multinucleated cells, and even a monokaryon isolated from a single spore becomes multinucleated during vegetative growth. Therefore, we conclude that irradiation with heavy particle beams is useful for developing cultivars for matsutake fruiting, although some issues regarding how to obtain stable mutants need to be addressed.

Fig. 1. A putative mutant generated by Fe-ion radiation (300 Gy: left) that generates a large amount of aerial hypha unlike the wild-type (right)

References

*1 Forestry and Forest Products Research Institute
*2 RIKEN Nishina Center
*3 Shiga Forest Research Center