Spin-isospin excitations can be studied by beta-decay and charge exchange reactions in mirror nuclei, shedding light on mirror symmetry, hence we can compare our results on the beta decay of proton-rich nuclei with the results of charge exchange experiments when appropriate targets for the mirror nuclei are available1. Accordingly we have performed experiments at GSI and GANIL to study $T_Z = -1$2 and $T_Z = -2$3,4 nuclei respectively where it became clear that the study of heavier, more exotic systems, demands beam intensities available only at the RIKEN Nishina Center. We have performed an experiment using the fragmentation of a 345 MeV 78Kr beam with typical intensity of 200 particle nA on a Be target. The fragments were separated in flight using the BigRIPS separator and implanted in three WAS3ABi double-sided Si strip detectors. The implantation setup was surrounded by the EUROBALL-RIKEN Cluster Array (EURICA). The description of the experiment is explained in another contribution to this progress report (EURICA). The solid line represents the fit to the decay curve.

Fig. 1. Time correlations between 58Zn implanted ions in WAS3ABi and the 203 keV γ rays detected in EURICA. The solid line represents the fit to the decay curve.

Fig. 2. Time correlations between 64Se (left) and 66Se (right) ions implanted in WAS3ABi and 901 and 836 keV γ rays respectively detected in EURICA. The solid lines represents the fit to the decay curves.

References