First application of the Trojan Horse Method with a radioactive ion beam: study of the 18F(p, α)15O reaction at astrophysical energies

S. Cherubini et al.: In this report.

The results of a pioneering experiment where the Trojan Horse Method1,2 was applied for the first time for measuring the cross section of an astrophysically important reaction, namely 18F(p, α)15O at Nova energies3,4, using a radioactive beam were published in Phys. Rev. C 92, 015805 (2015).

![Graph](image-url)

Fig. 1. The nuclear cross section spectrum as a function of the p-18F cm energy. The blue vertical line shows the position of the threshold for the 18F+p reaction ($E_{th} = 6.41$ MeV). The red dashed lines represent Gaussians used for fitting the data. The numbers above the arrows represent the peak positions in 18Ne excitation energy obtained from the fitting procedure.

The experiment was performed at the RIKEN Nishina Center using the CRIB apparatus from the University of Tokyo. The primary beam of 18O delivered by the AVF cyclotron was used to produce a 18F radioactive beam with intensity in the range of 10^5-10^6 pps.

The nuclear cross section and the astrophysical factor $S(E)$ were extracted from the data for the reaction 18F(p, α)15O. These are shown in Figs. 1 and 2 respectively. In order to improve the results obtained in this work, a new measurement of the same reaction was performed again in Fall 2015. The new experiment is also reported in this Accelerator Progress Report5.

![Graph](image-url)

Fig. 2. The 18F(p, α)15O astrophysical S-factor from this work. The full dots are THM experimental data with the assumption of $J^* = 3/2^+$ for the resonance at $E = 6460$ keV, the open ones corresponds to the assumption of $J^* = 5/2^-$ (the difference from this last assumption to the other possible value 1/2$^-$ and 3/2$^-$ being negligible within the errors). The solid and dashed lines shown in the figure are calculations presented and discussed in Ref.6 smeared to the present experimental resolution.

References
5) S. Cherubini et al.: In this report.