Production cross section measurement for radioactive isotopes produced from 78 Kr beam at 345 MeV/nucleon by BigRIPS separator

H. Suzuki,^{*1} T. Sumikama,^{*1} N. Fukuda,^{*1} H. Takeda,^{*1} Y. Shimizu,^{*1} D.S. Ahn,^{*1} D. Murai,^{*1,*2} N. Inabe,^{*1} K. Yoshida,^{*1} K. Kusaka,^{*1} Y. Yanagisawa,^{*1} M. Ohtake,^{*1} Z. Korkulu,^{*1} T. Komatsubara,^{*1} H. Sato,^{*1} and T. Kubo^{*1}

We have measured the production rates and the production cross sections for a variety of radioactive isotopes (RIs), which were produced from a ⁷⁸Kr beam at an energy of 345 MeV/nucleon using the BigRIPS separator¹), for the first time. Proton-rich isotopes with atomic numbers Z = 22-37 were produced by the projectile fragmentation of the primary beam on a 5-mm-thick Be production target. The particle identification of RIs was based on the TOF- $B\rho$ - ΔE method in the second stage of the BigRIPS²).

The production cross sections were deduced from the measured production rates and the transmission efficiency in the BigRIPS separator, which was simulated with the calculation code $LISE^{++3)}$. In the $LISE^{++}$ simulation, the parametrization for momentum distribution of the RIs was adjusted, because the exponential tails in the low-momentum regions observed in the experiment fell off faster than those calculated by the $LISE^{++}$ with the original parametrization. In preliminary, we used the parameters of the momentum distribution, which were obtained in the production cross-section measurement of proton-rich nuclei produced from the 345-MeV/nucleon ¹²⁴Xe beam. The parameters of the angular distribution were not changed from the original values in the code.

Figure 1 shows the production cross sections of RIs obtained in the ⁷⁸Kr-beam campaign. The solid and dashed lines in Fig. 1 show the cross sections predicted from the empirical formulae EPAX3.1a⁴) and $EPAX2.15^{5}$, respectively. EPAX3.1a predicts the cross sections better than EPAX2.15, which overestimates most of them. The measured cross sections of RIs with a wide range of Z are fairly well reproduced by EPAX3.1a; however, some isotopes show systematic discrepancies around the very neutron-deficient region. In the case of ⁶⁷Kr, which is the most neutron-deficient Kr isotope in our measurement, the experimental cross section is $(3.2 \pm 1.4) \times 10^{-12}$ mb (preliminary), while the value calculated using the EPAX3.1a formula is 4.25×10^{-10} mb. Further, we also observe that the discrepancy becomes significant with increasing Z number. These discrepancies were also observed in protonrich RIs produced from the 345-MeV/nucleon 124 Xe $beam^{6}$.

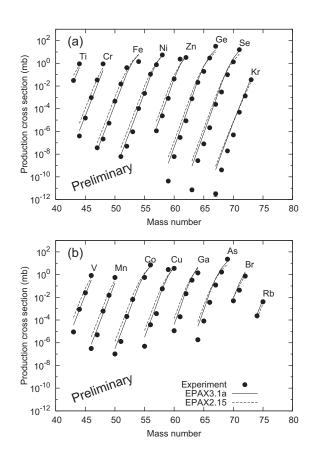


Fig. 1. Production cross sections of RIs produced in the 78 Kr + Be reaction at 345 MeV/nucleon with the predictions of EPAX parametrizations (Preliminary). (a) Results for even-Z isotopes. (b) Results for odd-Z isotopes. Solid and dashed lines show the values predicted using the EPAX3.1a and EPAX2.15 formulae, respectively.

References

- T. Kubo: Nucl. Instrum. Meth. Phys. Res. B 204, 97 (2003).
- N. Fukuda et al.: Nucl. Instrum. Meth. Phys. Res. B 317, 323 (2013).
- O.B.Tarasov, D.Bazin: Nucl. Instr. and Meth. B 266, 4657 (2008) (references therein; LISE⁺⁺ site, http://lise.nscl.edu, Michigan State University)
- 4) K. Sümmer: Phys. Rev. C 86, 014601 (2012).
- K. Sümmer and B. Blank: Phys. Rev. C 61, 034607 (2000).
- H. Suzuki et al.: Nucl. Instrum. Meth. Phys. Res. B 317, 756 (2013).

^{*1} RIKEN Nishina Center

^{*2} Department of Physics, Rikkyo University