Final results of $A_{LL}^{\pi^0}$ measurement at $\sqrt{s} = 510$ GeV at mid-rapidity through a PHENIX experiment[†]

I. Yoon *1,*2 for the PHENIX collaboration

One of the important functions of the relativistic heavy ion collider (RHIC) longitudinally polarized proton program is to constrain the gluon-spin component of proton (ΔG) by measuring the double helicity asymmetry (A_{LL}) of π^0 production $(A_{LL}^{\pi^0})$ and jet production (A_{LL}^{Jet}) . Based on the results of deep inelastic scattering experiments, the quark-spin component of the proton is only 0.330 ± 0.011 (*Theo.*) ± 0.025 (*Exp.*) \pm $0.028(Evol.)^{1}$. The remaining spin might be carried by gluons or orbital momentum.

Studies on the measurement of $A_{LL}^{\pi^0}$ and A_{LL}^{Jet} at $\sqrt{s} = 200$ GeV have been successfully published, and they have contributed to constrain $\Delta G^{2,3}$. Consequently, a positive $\Delta g(x)$ has been observed in the measured x region⁴⁾. However, the uncertainty of ΔG is still significant owing to the uncertainty at lower the Bjorken x region, which has not been accessed so far^{4} .

To explore the lower x region, where uncertainty is dominant, longitudinally polarized proton-proton collisions with increased energy, i.e., $\sqrt{s} = 510$ GeV, were successfully carried out in 2012 (Run12) and 2013 (Run13). With the data, $A_{LL}^{\pi^0}$ at $\sqrt{s} = 510$ GeV was measured and published recently. Because of the increased energy, the measurement of $A_{LL}^{\pi^0}$ at $\sqrt{s} = 510$ GeV could reach a lower x range, 0.01 < x, while the previous measurement of $A_{LL}^{\pi_0}$ and A_{LL}^{Jet} at $\sqrt{s} = 200$ GeV could reach 0.02 < x and 0.05 < x, respectively. $A_{LL}^{\pi_0}$ can be defined in terms of differences in cross-

sections as

$$A_{LL}^{\pi^{0}} = \frac{d\Delta\sigma^{\pi^{0}}}{d\sigma^{\pi^{0}}} = \frac{d\sigma_{++}^{\pi^{0}} - d\sigma_{+-}^{\pi^{0}}}{d\sigma_{++}^{\pi^{0}} + d\sigma_{+-}^{\pi^{0}}}$$
(1)

where $\sigma_{++(+-)}$ denotes the π^0 cross-section for proton collisions with the same(opposite) helicity. The π^0 cross-section can be decomposed into parton distribution functions, partonic reaction cross-sections, and fragmentation functions. Because most of π^0 s are from quark-gluon or gluon-gluon scattering at mid-rapidity region, $\Delta g(x)$ is accessible by measuring $A_{LL}^{\pi^0}$. This description is verified by comparing the π^0 cross-section between theoretical and experimental data. Equation 1 can be rewritten in terms of experimental observables as

$$A_{LL} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}, R = \frac{L_{++}}{L_{+-}}$$
(2)

where $P_{B(Y)}$ is the polarization of RHIC's "Blue (Yellow)" beam, $N_{++(+-)}$ is the yield of the π^0 candidate from the same (opposite) helicity collisions, and R is the relative luminosity of same and opposite helicity collisions.

 π^0 s are reconstructed by photon pairs detected by PHENIX mid-rapidity electromagnetic calorimeters. Sophisticated cuts are applied to suppress combinatorial background. The relative luminosity is fully corrected for multiple collisions and detector resolution effects.

Fig. 1 shows the result of $A_{LL}^{\pi^0}$ measurement at $\sqrt{s} = 510$ GeV. The world's first non-zero A_{LL} in hadron production is observed. The results agree with DSSV14 calculation based on a global fit of world A_{LL} data and supports positive ΔG . It thus supports positive ΔG in the previously accessed x region and extends the probed x region down to $x \sim 0.01$. Therefore it provides an additional constraint on $\Delta G^{5,6}$ This is a crucial step toward world-wide efforts to extract ΔG .

Fig. 1. Result of $A_{LL}^{\pi^0}$ measurement at $\sqrt{s} = 510$ GeV. The red error bars represent combined statistical and point-to-point systematic uncertainties. The yellow box represents systematic uncertainty from the relative luminosity. The theoretical curve with 90% C.L. band is obtained from the DSSV14 calculation⁴).

References

- 1) A. Airapetian et al., Phys. Rev. D 75, 012007 (2007).
- 2) A. Adare et al., Phys. Rev. D 90, 012007 (2014).
- L. Adamczyk et al., Phys. Rev. Lett. 115, 092002 3)(2015).
- 4) D. de Floran, R. Sassot, M. Stratmann and W. Vogelsang: Phys. Rev. Lett. 113. 012001 (2014)
- 5) R. Sassot (DSSV Group), private communication.
- 6) E. Nocera (NNPDF Group), private communication.

Condensed from the article in Phys. Rev. D. 93, 011501 (2016)

RIKEN Nishina Center

^{*2} The Research Institute of Basic Science, Seoul National University