Nuclear spectroscopy of multi-nucleon transfer reaction products in the 136 Xe and 198 Pt system

Y. Hirayama,^{*1} M. Mukai,^{*2,*3} Y.X. Watanabe,^{*1} Y. Kakiguchi,^{*1} P. Schury,^{*1} M. Oyaizu,^{*1} H. Miyatake,^{*1} M. Wada,^{*1,*2} M. Ahmed,^{*1,*3} S. Kimura,^{*2,*3} J.Y. Moon,^{*4} J.H. Park,^{*4} H. Ishiyama,^{*4} S.C. Jeong,^{*4} S. Kanaya,^{*5} H. Muhammad,^{*5} A. Odahara,^{*5} T. Shimoda,^{*5} S. Suzuki,^{*5} and H. Tsuru^{*5}

We have developed the KEK Isotope Separation System (KISS)¹⁾ to study the β -decay properties of neutron-rich isotopes with neutron numbers around N = 126 for astrophysics research²⁾. We extracted elastic events of ¹⁹⁸Pt and unstable nuclei of ^{199,201}Pt and ^{196,197,198}Ir produced in the ¹³⁶Xe beam and ¹⁹⁸Pt target system³⁾. We successfully measured the lifetime of these unstable nuclei, and measured the hyperfine structure (HFS) of ¹⁹⁹Pt and ^{196,197}Ir in order to determine the magnetic dipole moment and the change in the charge radius by using the in-gas-cell laser ion-ization spectroscopy technique.

We performed nuclear spectroscopy using the 136 Xe beam with an energy of 10.75 MeV/nucleon and a maximum intensity of 100 pnA. We introduced a doughnut-shaped gas cell with the 198 Pt rotating target system in order to increase the extraction yield not only by increasing the 136 Xe primary beam intensity but also by reducing the argon-gas plasma density in the gas cell. The 136 Xe beam was directed onto the 198 Pt rotating target placed in front of the gas cell, and was stopped at a tungsten beam dump without entering the gas cell. As a result, we successfully extracted the laser ionized 199 Pt⁺ with a one order of magnitude higher yield than that with a primary beam intensity of 20 pnA.

Figure 1 shows a typical β -decay curve of ¹⁹⁷Ir. The half-life time was evaluated from the fit to the spectrum where the decays of the parent nucleus ¹⁹⁷Ir and daughter nucleus ¹⁹⁷Pt and a constant background were taken into account. The half-life times measured in this experiment are listed in Table 1. The measured half-life times $t_{1/2}$ were in good agreement with the reported values.

Figure 2 shows the measured HFS of ¹⁹⁹Pt obtained by detecting β -rays. We found that not only ^{199g}Pt but also ^{199m}Pt were laser-ionized, from γ -ray measurement. This indicated that the measured HFS consists of the HFS of ^{199g}Pt and ^{199m}Pt. In order to identify each HFS, we plan to measure the HFS by detecting γ -rays emitted from ^{199m}Pt, and then decompose the HFS of ^{199g}Pt. It is feasible to evaluate the magnetic dipole moment and the change in charge

^{*4} Institute for Basic Science, Rare Isotope Science Project

radius for $^{199\mathrm{g}}\mathrm{Pt}$ and $^{199\mathrm{m}}\mathrm{Pt}$ from the spectrum analysis.

Fig. 1. Measured β -decay curve of ¹⁹⁷Ir. The red line indicates the best-fit result to evaluate the half-life time.

Table 1. Comparison between the present measured and reported half-life times of 199,201 Pt and 196,197,198 Ir.

Nuclide	Measured $t_{1/2}$	Reported $t_{1/2}$
199 Pt	31.3(1.5) min	$30.8(2) \min$
^{201}Pt	$1.9(5) \min$	$2.5(1) \min$
196 Ir	52(5) s	$52(1) \ s$
197 Ir	$6.1(4) \min$	$5.8(5) \min$
198 Ir	$10(1) \ s$	8(1) s

Fig. 2. Measured hyperfine structure of ¹⁹⁹Pt.

References

- 1) Y. Hirayama et al., Nucl. Instr. Meth. B353, 4 (2015).
- 2) S.C. Jeong et al.: KEK Report 2010-2.
- Y.X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015).

^{*1} Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*&}lt;sup>3</sup> Department of Physics, University of Tsukuba

^{*&}lt;sup>5</sup> Department of Physics, Osaka University