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Volume dependence of baryon number cumulants and their ratios†

V. Skokov,∗1

Experiments with ultrarelativistic heavy-ion colli-
sions at RHIC and LHC explore the phase structure
of Quantum ChromoDynamics (QCD) at nonzero tem-
perature and density, and so probe the phase transi-
tions associated with deconfinement and the restora-
tion of chiral symmetry. Two of themost promising ob-
servables are the fluctuations of the net baryon number
and electric charge. The cumulants and related quan-
tities of these fluctuations may provide experimental
evidence for a chiral critical endpoint or chirally inho-
mogenous phases.

However, there are many other effects besides the
critical dynamics which might be important in the in-
terpretation of the data. Those include the conser-
vation of baryon number, corrections for efficiency in
the detectors, hadronic rescattering, non-equilibrium
effects, and finally volume fluctuations. The latter
are important due to a finite size of a domain pass-
ing through the critical region during the evolution of
the fireball. Usually one tries to minimize the effects
of fluctuations in the volume by considering the ratios
of cumulants. As we describe in the main text, in such
ratios the explicit dependence on the volume cancels
out, making the analysis of volume fluctuations triv-
ial. However, we show that the implicit dependence on
the volume might be very strong if the characteristic
system size is below 5 fm.

In this study we use the quark-meson model as a
realization of the chiral symmetry in QCD at low en-
ergies. The quark-meson (QM) model consists of a
O(4) multiplet of mesons, φ = (σ, �π), coupled to quark
fields through a Yukawa-type coupling.

In order to formulate a non-perturbative thermody-
namics in the QM model we adopt a method based
on the functional renormalization group (FRG). The
FRG is based on an infrared regularization with the
momentum scale parameter, where the full propagator
is derived from a corresponding effective action.
We consider systems in which there is a true critical

point in infinite volume. In finite volume, instead there
is an apparent critical point (ACP). There is some de-
gree of arbitrariness in how one defines an apparent
critical point. We define the position of the apparent
critical point from the maximum in the corresponding
chiral susceptibility, which is equivalent to the min-
imum in the sigma mass. We stress, however, that
unlike the case of infinite volume, that in finite vol-
ume other definitions will give different positions for
the apparent critical point.

With our definition, we show that at some interme-
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Fig. 1. The location of the apparent critical points (ACP)

as a function of the system size, L. The squares (circles)

denote ACP I (II), see text.

Fig. 2. The ratio of the fourth to the second order sus-

ceptibilities as a function of temperature for different

systems sizes; the results are computed at zero chemi-

cal potential.

diate system size, the system has two apparent critical
points, located at different values of T and μ. One of
the apparent critical points, which we call ACP I, ap-
proaches the true critical point in the limit of infinite
volume; we show that for the ACP I, it approaches the
zero temperature axis as the volume decreases. The
second apparent critical point, which we call ACP II,
appears near the zero temperature axis, and evolves
to higher temperature as the volume decreases. The
location of the two apparent critical points is depicted
in Fig. 1. The emergence of a second apparent critical
point influences the cumulants of baryon number.
In Fig. 2, we show the dependence of the kurtosis

χ4/χ2 on the temperature for different system sizes
and different anisotropy parameters. The calculations
are done for zero μ.
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