A directly measurable parameter quantifying the halo nature of one-neutron halo nuclei[†]

S. Watanabe,^{*1} M. Yahiro,^{*2} M. Toyokawa,^{*2} and T. Matsumoto^{*2}

After the discovery of a halo nucleus ¹¹Li¹⁾, total reaction cross sections ($\sigma_{\rm R}$) and/or interaction cross sections ($\sigma_{\rm I}$) were further measured to identify new halo nuclei²⁾. For example, it was established that ¹¹Be and ^{15,19}C are one-neutron halo nuclei, and ⁶He, ¹¹Li, ¹⁴Be, and ²²C are two-neutron halo nuclei with Borromean structures. Nowadays, the measurements reach the *pf*shell region, i.e., the vicinity of the neutron-drip line for Ne and Mg isotopes^{3,4)}; ³¹Ne and ³⁷Mg are considered to be one-neutron halo nuclei^{6,7)}. Thus, the sudden enhancement of measured $\sigma_{\rm R}$ is a good experimental probe of halo nuclei. However, the relation between $\sigma_{\rm R}$ and the separation energies of the halo nuclei are not well understood particularly in the weak-binding limit.

In this report, we focus on the scattering of oneneutron halo nuclei (a) on a target (T) at high incident energies ($E_{\rm in} \gtrsim 240$ MeV/nucleon) where projectilebreakup effects are expected to be small. At the high incident energies, we can identify $\sigma_{\rm R}$ and $\sigma_{\rm I}$ as absorption cross sections $\sigma_{\rm abs}$. We also assume that oneneutron halo nuclei (a) are well described by the core + neutron (c + n) two-body model, and the scattering of a on T is well explained by the c + n + T three-body model. We now propose the parameter

$$\mathcal{H} = \frac{\sigma_{\rm abs}(a) - \sigma_{\rm abs}(c)}{\sigma_{\rm abs}(n)},\tag{1}$$

where $\sigma_{abs}(x)$ is the absorption cross section of x on the same T at the same incident energy per nucleon. The parameter \mathcal{H} represents an enhancement of $\sigma_{abs}(a)$ from $\sigma_{abs}(c)$ relative to $\sigma_{abs}(n)$, and varies in a range of $0 \leq \mathcal{H} \leq 1$. The halo structure is most developed when $\mathcal{H} = 1$ and least developed when $\mathcal{H} = 0^{5}$. Therefore, \mathcal{H} is expected to quantify the degree of halo nature regardless of scattering conditions such as E_{in} or T.

Figure 1 shows the behavior of \mathcal{H} as a function of the one-neutron separation energy S_n . Experimental data is listed in Ref.⁵⁾. The results of the present model⁵⁾, which is based on the spherical Woods-Saxon potential and the Glauber model, are consistent with the empirical values for all halo nuclei ¹¹Be, ¹⁹C, ³¹Ne and ³⁷Mg within 1σ error bars. \mathcal{H} is then extrapolated to the $S_n = 0$ limit as shown by the lines. Only for *s*-wave halo nuclei ¹¹Be and ¹⁹C, the lines reach $\mathcal{H} = 1$ in the $S_n = 0$ limit. On the other hand, the lines saturate at about 0.55 for *p*-wave halo nuclei ³¹Ne and ³⁷Mg, and at about 0.21 for a *d*-wave non-halo nucleus ¹⁷C. As a result, the five lines are well separated into three groups of *s*-wave halo, *p*-wave halo and *d*-wave non-halo in the vicinity of $S_n = 0$. If *s*-wave halo nuclei with very small separation energy ($S_n \leq 0.01 \text{ MeV}$) are newly discovered, they should be on or near the line. This may be also true for *p*-wave halo nuclei. Therefore, if $\sigma_{\rm R}(n)$, $\sigma_{\rm R}(c)$ and $\sigma_{\rm R}(a)$ are newly measured at the same incident energy per nucleon, one can derive \mathcal{H} and see the halo nature of the nuclei without model calculation. \mathcal{H} is thus a good indicator quantifying the halo nature of one-neutron halo nuclei.

Fig. 1. Behavior of \mathcal{H} as a function of S_n . The horizontal axis is in the logarithmic scale. The theoretical results are shown by the solid (dotted) line for ¹¹Be (¹⁹C), the dashed (dot-dashed) line for ³¹Ne (³⁷Mg), the dot-dot-dashed line for ¹⁷C, and the dot-dashed line for ¹⁵C. See Ref.⁵⁾ for the experimental data.

References

- I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B 206, 592 (1988).
- 2) A. Ozawa et al., Nucl. Phys. A 691, 599 (2001).
- 3) M. Takechi et al., Phys. Lett. B 707, 357 (2012).
- 4) M. Takechi et al., Phys. Rev. C 90, 061305(R) (2014).
- 5) M. Yahiro et al., Phys. Rev. C **93**, 064609 (2016).
- 6) K. Minomo et al., Phys. Rev. Lett. 108, 052503 (2012).
- 7) S. Watanabe et al., Phys. Rev. C 89, 044610 (2014).

[†] Condensed from the article in Phys. Rev. C **93**, 064609 (2016)

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Department of Physics, Kyushu University