## Shape coexistence along N = 40 studied with isomer and beta decay

F. Recchia,<sup>\*1</sup> S. Riccetto,<sup>\*2</sup> K. Wimmer,<sup>\*3,\*4</sup> S.M. Lenzi,<sup>\*1</sup> T. Davinson,<sup>\*5</sup> A. Estrade,<sup>\*6,\*4</sup> C.J. Griffin,<sup>\*5</sup> S. Nishimura,<sup>\*4</sup> V. Phong,<sup>\*4</sup> P.-A. Söderström,<sup>\*4</sup> O. Aktas,<sup>\*7</sup> M. Alaqueel,<sup>\*8,\*9</sup> T. Ando,<sup>\*3</sup> H. Baba,<sup>\*4</sup> S. Bae,<sup>\*10</sup> S. Choi,<sup>\*10</sup> P. Doornenbal,<sup>\*4</sup> J. Ha,<sup>\*10,\*4</sup> L. Harkness-Brennan,<sup>\*8</sup> T. Isobe,<sup>\*4</sup> P. John,<sup>\*1</sup> D. Kahl,<sup>\*5</sup> G. Kiss,<sup>\*4</sup> M. Labiche,<sup>\*11</sup> K. Matsui,<sup>\*4</sup> S. Momiyama,<sup>\*3</sup> D. Napoli,<sup>\*12</sup> M. Niikura,<sup>\*3</sup> C. Nita,<sup>\*13</sup>

Y. Saito,<sup>\*4</sup> H. Sakurai,<sup>\*4,\*3</sup> P. Schrock,<sup>\*3</sup> T. Sumikama,<sup>\*4</sup> C. Stahl,<sup>\*14</sup> V. Werner,<sup>\*14</sup> and W. Witt<sup>\*14</sup>

In  $^{68}$ Ni the presence of a high-lying  $2^+$  state with small transition probability to the ground state is a result of the N = 40 harmonic oscillator shell gap between the fp shell and the  $g_{9/2}$  orbital. This shell gap is reduced as protons are removed in Fe and Cr isotopes<sup>1)</sup>. Collective behavior is caused by quadrupole correlations which favour energetically the deformed intruder states involving the neutron  $g_{9/2}$  and  $d_{5/2}$  orbitals and proton excitations across the Z=28 subshell  $gap^{2}$  leading to rather low-lying first  $2^+$  states and large B(E2) values.

Limited experimental data is still available for the low spin states of the region of deformation that develops south of  $^{68}$ Ni. The trend of the ratio  $E_{4^+}/E_{2^+}$ towards N = 40 in Cr isotopes suggests a transition from spherical (at N = 32) to deformed shapes, that approach better the gamma-unstable regime than the axially deformed one, while Fe isotopes lie at the O(6)limit from N = 30 to  $N = 42^{3}$ . To better understand the structure of these nuclei, the knowledge of other states at low excitation energy is needed.

The large difference in angular momentum between the  $p_{1/2}$ ,  $f_{5/2}$  and  $d_{5/2}$ ,  $g_{9/2}$  orbitals around the Fermi surface in  $N \approx 40$  nuclei leads to the occurrence of several isomeric states. In the Cr and Ti nuclei with N = 39 and N = 41 similar configurations should also lead to long-lived states. Observation of isomers at N= 39 will allow us to draw conclusions on the location and evolution of intruder orbitals towards  $^{60}$ Ca. Theoretical and experimental investigations show that the collective behavior observed in <sup>64</sup>Cr, with its small  $E(2^+)$  energy and large B(E2) value, is restored approaching  ${}^{60}Ca^{2,4)}$ .

In this report we present some preliminary experimental results. Several new gamma transitions deexciting isomeric states, as well as states populated in

- Department of Physics, University and INFN Perugia
- \*3 Department of Physics, University of Tokyo
- \*4 **RIKEN** Nishina Center
- \*5School of Physics and Astronomy, University of Edinburgh
- \*6Department of Physics, Central Michigan University
- \*7 Department of Physics, KTH Stockholm
- \*8 Oliver Lodge Laboratory, The University of Liverpool
- \*9 Imam Muhammad Ibn Saud Islamic University of Riyadh
- \*10 Department of Physics, Seoul National University
- \*11STFC Daresbury Laboratory
- $^{\ast 12}$  INFN Legnaro (Padova)
- \*13 IFIN Horia Hulubei Bucharest
- $^{\ast 14}$ Institut für Kernphysik, Technische Universität Darmstadt



Fig. 1. Ions produced, identified and implanted into the AIDA active stopper for (top) the  $^{64}$ Cr setting, (bottom) the  $^{60}$ Ti setting.

the beta decay have been identified for the first time. The determination of beta decay half-lives in this region is of relevance for a better understanding of the r-process nucleosynthesis.

A high intensity <sup>238</sup>U beam provided by the RIKEN Nishina Center Accelerator Complex impinging on a Be target was used to produce the nuclides of interest in in-flight fission. In the experiment the EURICA gamma-ray array surrounded the implantation detector AIDA into which the fragments of interest were implanted. The fragments were identified using the BigRIPS separator employing the  $\Delta E$ -ToF-B $\rho$  method. Figure 1 shows the particle identification plots of the fragments using this technique for the  $^{60}$ Ti and the <sup>64</sup>Cr settings. The analysis of the experimental data on the  $\beta$ -decays in <sup>64</sup>Cr region and the isomers decay is in progress.

## References

- 1) Y. Tsunoda et al. J. Phys. Conf. Ser. 445, 012028 (2013).
- 2) S.M.Lenzi et al. Phys.Rev. C 82, 054301 (2010).
- 3) J. Kotila and S.M. Lenzi, Phys.Rev. C 89, 064304 (2014).
- 4) A. Gade et al., Phys. Rev. Lett. 112 (2014) 112503.

<sup>\*1</sup> Department of Physics and Astronomy, University and INFN Padova \*2