Empirical formulae of the masses of elementary particles

Y. /	\kiba*1
------	---------

particle	formula	$\operatorname{calculated}(c)$	measured(m)	c/m - 1
e	$1/(12\pi^2)\epsilon_0^{1/3}(1+(1/4)(1/(6\pi)^2))^{-1}M_{pl}$	$0.511002~{\rm MeV}$	$0.510998946 \pm 0.000000031~{\rm MeV}$	5.9×10^{-6}
μ	$3/2\epsilon_0^{1/3}(1-1/(2\pi)+3/(4\pi)^2)^{-1}M_{pl}$	$105.6594~{\rm MeV}$	$105.6583745 \pm 0.0000024~{\rm MeV}$	9.6×10^{-6}
τ	$9\pi\epsilon_0^{1/3}(1-1/(8\pi)+(5/4)(1/(6\pi)^2))^{-1}M_{pl}$	$1.77684~{\rm GeV}$	$1.77686 \pm 0.12 { m ~GeV}$	1.9×10^{-5}
t	$8 \times (6\pi)^2 \epsilon_0^{1/3} M_{pl}$	$172.1~{\rm GeV}$	$173.4\pm0.75~{\rm GeV}$	7.5×10^{-3}
c	$12\epsilon_0^{1/3}M_{pl}$	$1.24 {\rm GeV}$	$1.28 \pm 0.025 \text{ GeV}(\overline{\text{MS}} \text{ at } m_c)$	3.4×10^{-2}
u	$8 \times (6\pi)^{-2} \epsilon_0^{1/3} M_{pl}$	$2.07 {\rm ~MeV}$	$2.15\pm0.15~{\rm MeV}~(\overline{\rm MS}$ at 2 GeV)	3.8×10^{-2}
b	$3 \times 2^{-1/12} (6\pi) \epsilon_0^{1/3} M_{pl}$	$4.33 {\rm GeV}$	$4.18 \pm 0.03 \text{ GeV}(\overline{\text{MS}} \text{ at } m_b)$	3.6×10^{-2}
s	$\epsilon_0^{1/3} M_{pl}$	$91.8 { m ~MeV}$	$93.8 \pm 2.4 \text{ MeV} (\overline{\text{MS}} \text{ at } 2 \text{ GeV})$	2.1×10^{-2}
d	$(6\pi)^{-1}\epsilon_0^{1/3}M_{pl}$	$4.87~{\rm MeV}$	$4.7 \pm 0.2 \text{ MeV} (\overline{\text{MS}} \text{ at } 2 \text{ GeV})$	3.6×10^{-2}
Z	$1/(8\pi^2)\epsilon_0^{1/4}(1+(1/11)(1/(2\pi)^2))^{-1}M_{pl}$	$91.1883~{\rm GeV}$	$91.1876 \pm 0.0021~{\rm GeV}$	7.4×10^{-6}
W	$\left 2^{-1/4} / (8\pi^2) \epsilon_0^{1/4} (1 - (19/11)(1/(2\pi)^2))^{-1} M_{pl} \right $	$80.373~{\rm GeV}$	$80.385 \pm 0.015 ~{\rm GeV}$	1.9×10^{-4}
H	$2^{1/2}/(8\pi^2)\epsilon_0^{1/4}(1+(14/11)(1/(2\pi)^2))^{-1}M_{pl}$	$125.22~{\rm GeV}$	$125.1\pm0.2~{\rm GeV}$	1.0×10^{-3}

I report emprical formulae of the masses of charged leptons (e, μ, τ) , quarks (t, c, u, b, s, d), gauge bosons (Z, W), and Higgs boson (H). The formulae yield the masses in terms of the Planck mass M_{pl} and a dimensionless constant $\epsilon_0 = 2 \times (6\pi)^{-48}$. There is no adjustable parameter in the formulae.

The mass values calculated using the formulae are compared with measured values. For the calculation, the value of Planck mass from $CODATA^{1}$ is used:

 $M_{pl} = 1.220910 \pm 0.000029 \times 10^{19}$ GeV.

The measured values of particle masses are taken from PDG2016.²⁾ The mass of a quark is dependent on the scale and the scheme. In the PDG review, the mass of quarks other than the t quark are given in the $\overline{\text{MS}}$ scheme at $\mu = 2$ GeV for the u, d, s quarks and at $\mu = m_q$ for the b and c quarks. For the t quark, the measured mass is considered to be the pole mass. The formula for a quark is assumed to yield the $\overline{\text{MS}}$ mass at the Z boson mass m_Z . The first-order renormalized group equation (RGE) below is used to correct for the mass value at m_Z to the mass at the scale the PDG uses:

$$\frac{m(t)}{m_0} = \exp\left(-\int \frac{\alpha_s(t)}{\pi} dt\right),\,$$

where $t = \log \mu^2$ and $\alpha_s(t)$ is the running QCD coupling constant at the scale μ . The value of $\alpha_s(t)$ in the PDG2016 review is used for the calculation.

The formulae, the calculated values (c) using the formulae, the measured values (m), and difference |c/m - 1| are summarized in the table above. The calculation reproduce the measured mass values well. The agreement is within the uncertainty of the measured mass or the Planck mass (2.4×10^{-5}) .

There is a pattern in the formulae. The formulae can be summarized as

$$m_{l} = \frac{1}{2} N_{l} (6\pi)^{n_{l}} \epsilon_{0}^{1/3} (1+\delta_{l})^{-1} M_{pl}$$
$$m_{q} = 2^{c_{q}} N_{q} (6\pi)^{n_{q}} \epsilon_{0}^{1/3} M_{pl},$$
$$m_{B} = \frac{2^{c_{B}}}{8\pi^{2}} \epsilon_{0}^{1/4} (1+\delta_{B})^{-1} M_{pl},$$

where m_l , m_q , and m_B are the masses of charged leptons, quarks, and bosons, respectively. N_l and N_q are small positive integers, n_l and n_q are integers ranging from -2 to 2, and δ_l and δ_B are small real numbers. $c_b = -1/12$ and $c_q = 0$ for all other quarks, and $c_Z = 0$, $c_W = -1/4$, and $c_H = 1/2$. The pattern suggests the existence of a rule that determines the formulae. Note that all fermion masses are order of $(6\pi)^{n_f} \epsilon_0^{1/3}$ with $-2 \leq n_f \leq 2$ and the boson masses are of the order of $1/8\pi^2 \epsilon_0^{1/4}$. Presumaby, this part is the main part of the mass, and $(1 + \delta_l)$ and $(1 + \delta_B)$ are correction factors due to interactions.

Note that the value of ϵ_0 is consistent with the product of the Hubble constant H_0 and the Planck time $t_{pl} = 1/M_{pl}$:

$$H_0 \times t_{pl} = (1.211 \pm 0.014) \times 10^{-61}$$

$$\epsilon_0 \equiv 2 \times (6\pi)^{-48} = 1.220608 \times 10^{-61}$$

Here, the WMAP 9 year value of H_0 is used. This suggests that the masses of elementary particles are related to the expansion of space-time.

A theoretical model that can explain these formulae is under development.

References

- 1) Rev. Mod. Phys. 88, 053009 (2016).
- Review of Particle Physics, Chin. Phys. C 40, 100001 (2016).

^{*1} RIKEN Nishina Center