
Development of an intense mid-infrared coherent light source for
muonic hydrogen spectroscopy

S. Kanda,∗1 S. Aikawa,∗2 K. Ishida,∗1 M. Iwasaki,∗1 Y. Ma,∗1 Y. Matsuda,∗3 K. Midorikawa,∗4 Y. Oishi,∗5

S. Okada,∗6 N. Saito,∗4 M. Sato,∗5 A. Takamine,∗1 K. S. Tanaka,∗7 H. Ueno,∗1 S. Wada,∗4 and M. Yumoto∗4

The proton is a fundamental constituent of the mat-
ter. However, its internal structure is complicated
and perplexing. The internal structure of a proton
is described by the electric and magnetic form fac-
tors. These form factors appear in the charge ra-
dius which has been measured by using electron-proton
scattering and spectroscopy of hydrogen-like atoms.
Since the proton charge radius was determined by
the spectroscopy of Lamb shift in muonic hydrogen at
PSI,1) there has been a significant discrepancy between
the electronic and muonic measurement results of the
charge radius.2) Both the experiments have been vali-
dated; however, the discrepancy was reproduced.3,4)

Alternatively, the proton structure is expressed by
the Zemach radius, which is defined by a convolution
of the charge distribution with the magnetic moment
distribution. The Zemach radius can be extracted from
the hyperfine splitting (HFS) of muonic hydrogen as a
contribution arising from the finite volume effect of
the proton. We aim to determine the proton Zemach
radius via laser spectroscopy of the ground-state hy-
perfine splitting in muonic hydrogen. The HFS energy
of muonic hydrogen is 183 meV, and it corresponds to
a light having the wavelength of 6.8 µm. The hyperfine
transition is E1-forbidden, and an intense mid-infrared
coherent light source is essential to the experiment.
In order to perform precision spectroscopy of muonic

hydrogen HFS, a pulse energy of 20 mJ and a spectral
width of 100 MHz are required for the transition laser.
The coherent light with a wavelength of 6.8 µm is gen-
erated by an optical parametric oscillator (OPO) using
a ZnGeP2 (ZGP) nonlinear optical crystal. The OPO
is pumped with a Tm3+, Ho3+ co-doped YAG ceramic
laser. A quantum cascade laser (QCL) is adopted as
a narrowband seeder. The output beam of the OPO
is amplified by the ZGP optical parametric amplifiers
(OPAs). Figure 1 illustrates a diagram of the proposed
laser system.
As a first step to develop the laser system, the

Tm,Ho:YAG ceramic laser was developed. A YAG ce-
ramic rod was pumped by laser diodes and a quasi-
continuous light output was pulsated by an acousto-
optic Q-switch. A pulse energy of 20 mJ or higher and
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a pulse width of 150 ns or less are required for the
output beam of Tm,Ho:YAG ceramic laser. Figure 2
shows the measured pulse energy and pulse width of
the laser beam as a function of the current applied to
the laser diodes. A TEM00 mode beam profile was
obtained, and the beam radius was 1 mm. Sufficient
performance of the light source was achieved by align-
ment optimization of each optical component.
Since the development of pumping light source was

successful, the OPO pumped with the Tm,Ho:YAG ce-
ramic laser will be demonstrated as the next step. The
QCL as a seeder is under development and needs to be
tested.

Fig. 1. Diagram of the laser system. The system com-

prises of three stages: the Tm,Ho:YAG ceramic laser;

the QCL-seeded ZGP-OPO; and the ZGP-OPAs. A

quarter-waveplate is placed after the OPA to obtain a

circularly polarized light. In the spectroscopy experi-

ment, two sets of the laser system will be employed for

a total energy of 20 mJ.

Fig. 2. Output characteristics of the Tm,Ho:YAG ceramic

laser. The black circles correspond to the pulse energy,

which refers to the left ordinate. The red squares cor-

respond to the pulse width, which refers to the right

ordinate. The inset represents the beam profile.
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