Production of no-carrier-added barium tracer of 135mBa

S. Yano, H. Haba, Y. Komori, T. Yokokita, and K. Takahashi

The long-lived 133Ba isotope (half-life $T_{1/2} = 10.51$ y) is the only Ba isotope commercially available from Japan Radioisotope Association. Since 133Ba is produced at a nuclear reactor, its specific radioactivity is low with a typical value of approximately 0.5 MBq µg$^{-1}$. Barium-135mBa with $T_{1/2} = 28.7$ h can be produced from the 133Cs(α, x)135mBa reaction by using a cyclotron. Barium-135mBa emits a single 268.2-keV γ-ray, which would be useful for radiotracer studies of Ba, especially for single-photon-emission computed tomography (SPECT). In this work, we investigated a procedure to produce 135mBa of high specific radioactivity by using the 133Cs(α, x)135mBa reaction and no-carrier-added chemical separation.

CsCl powder (Sigma-Aldrich; chemical purity > 99.999%) was pressed into a disk of 10-mm diameter and 240-µg cm$^{-2}$ thickness at a pressure of 2×10^4 kg cm$^{-2}$ for 3 min. The CsCl pellet covered with a 10-µm Al foil (chemical purity > 99.99%) was placed on a target holder. The target was irradiated for 30 min with a 50-MeV alpha beam having an intensity of 3.0 µA at the RIKEN AVF cyclotron. During the beam irradiation, the target was cooled with circulating helium gas (30 L min$^{-1}$) and water (1.5 L min$^{-1}$). The beam axis was continuously rotated in a circle of diameter approximately equal to 2 mm at 2 Hz to avoid local heating of the target by using electromagnets on the beam line of the RIKEN AVF cyclotron. After the irradiation, 135mBa was chemically separated from the target material and by-products such as 135La and 132Cs by using a chromatography column filled with the Eichrom Sr resin2 (Fig. 1). The radioactivity and radionuclidic purity of the purified 135mBa were determined by γ-ray spectrometry using a Ge detector. The chemical purity and specific radioactivity were evaluated by chemical analysis using an inductively coupled plasma mass spectrometer (ICP-MS). The γ-ray spectrum of the purified 135mBa is shown in Fig. 2. Only Ba isotopes of 131Ba, 133Ba, 135mBa, and 135mBa were identified. The radioactivity of 135mBa was determined to be 2.25 MBq at the end of bombardment (EOB). The chemical yield of 135mBa was greater than 96%. Decontamination factors of 135La and 132Cs from 135mBa were evaluated to be 103 and 105, respectively. The radionuclidic purity of 135mBa was approximately 68% at the EOB. The major radionuclidic impurity was 133mBa ($T_{1/2} = 38.9$ h) which was produced in the 133Cs(α, x)135mBa reaction. Referring to the excitation functions for the 134Cs(α, x)135Ba and 133Cs(α, x)135mBa reactions in the TENDL-2015 library,3 it is expected that the radionuclidic purity of 135mBa can be increased at lower beam energies. In the ICP-MS analysis, only Cu (1280 ng), U (160 ng), Zn (140 ng), and Ba (100 ng) were detected among the elements having atomic number $Z \geq 20$ in the purified 135mBa with a contamination level > 100 ng. The specific radioactivity of 135mBa was then 23 MBq µg$^{-1}$ at the EOB. This specific radioactivity is two orders of magnitude larger than that of the commercial 133Ba.

Based on the present results, we estimate that approximately 80 MBq of the no-carrier-added 135mBa could be produced after 24-h irradiation of the 240-µg cm$^{-2}$ CsCl target with the 50-MeV and 3-µA alpha beam. The expected specific radioactivity is approximately 830 MBq µg$^{-1}$.

References