New isotope of 39 Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon 48 Ca beam

D. S. Ahn,^{*1} N. Fukuda,^{*1} H. Suzuki,^{*1} Y. Shimizu,^{*1} H. Takeda,^{*1} T. Sumikama,^{*1} H. Ueno,^{*1} K. Yoshida,^{*1}
N. Inabe,^{*1} H. Sato,^{*1} H. Baba,^{*1} T. Komatsubara,^{*1} Y. Yanagisawa,^{*1} K. Kusaka,^{*1} M. Ohtake,^{*1} H. Otsu,^{*1}
T. Kubo^{*1,*2} O. B. Tarasov,^{*1,*2} B. M. Sherrill,^{*1,*2} D. J. Morrissey,^{*1,*2} D. Bazin,^{*1,*2} T. Nakamura,^{*1,*3}
J. Amano,^{*1,*4} N. Iwasa,^{*1,*5} S. Ishikawa,^{*1,*5} T. Sakakibara,^{*1,*5} and H. Geissel^{*1,*6}

The neutron dripline drawn between bound and unbound nuclei is important to verify the mass models and to understand nuclear structures. In 2014 experiment,¹⁾ a search for ³³F and ³⁶Ne isotopes was performed to determine the neutron dripline. The non-observation for these isotopes indicates that they are unbound.

In April 2017, the experiment (proposal number: DA16-01-01) was carried out, aiming to search the existence of a new ³⁹Na (Z = 11, N = 28) isotope as shown in Fig. 1 and to determine the neutron dripline for neon isotopes. High statistics data of ³⁶Ne isotope were also obtained to confirm the previous non-observation.

Fig. 1. New isotope of 39 Na with the neutron number $N{=}28$ and neutron dripline.

The neutron-rich neon and sodium isotopes were produced by the projectile-fragmentation of a ⁴⁸Ca beam with an energy of 345 MeV/nucleon at RIKEN RIBF. The high-intensity beam made it possible to search the neutron dripline. The magnetic rigidity (B ρ) of the first dipole magent using the BigRIPS²) separator was tuned for the ³⁹Na isotope. Two wedgeshaped degraders at the F1 and F5 dispersive foci were used to purify the RI beams. A thick collimator³) made of an SUS material with 50-cm thickness was installed at the F2 focal plane to reject tritons and other light particles. The different B ρ value was tuned for the ³⁶Ne isotope. The experimental conditions for ³⁹Na and ³⁶Ne settings are summarized in Table 1.

The particle identification (PID) was conducted using the TOF-B ρ - Δ E method.⁴) Figure 2 shows a pre-

Table 1. Experimental conditions.

Settings	³⁹ Na	³⁶ Ne
Target	Be 20 mm	Be 20 mm
F1 degrader	Al 15 mm	Al 15 mm
F5 degrader	Al 7 mm	Al 7 mm $$
$\mathrm{B} ho$	$9.155 \mathrm{Tm}$	$9.4077~\mathrm{mm}$
Momentum acceptance	$\pm 3\%$	$\pm 3\%$

liminary PID plot for the ³⁹Na setting. The new isotope of ³⁹Na was clearly observed. The nonobservation of any events corresponding to ³⁸Na indicates that it is unbound. In this experiment, we also determined the dripline of neon isotopes with a high confidence level. The detailed data analysis is currently in progress.

Fig. 2. Preliminary PID plot for the ³⁹Na setting.

References

- 1) N. Fukuda, T. Kubo et al., to be submitted.
- T. Kubo *et al.*, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003).
- 3) D. S. Ahn et al., RIKEN Accel. Prog. Rep. 50, 85 (2017).
- N. Fukuda *et al.*, Nucl. Instrum. Methods Phys. Res. B 317, 323 (2013).

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> FRIB/NSCL, Michigan State University

^{*&}lt;sup>3</sup> Department of Physics, Tokyo Institute of Technology

^{*4} Department of Physics, Rikkyo University

^{*5} Department of Physics, Tohoku University

^{*6} GSI Helmholtzzentrum für Schwerionenforschung