Effect of pairing on the wobbling motion in odd-A nuclei[†]

K. Sugawara-Tanabe^{1,2} and K. Tanabe³

As an indicator of a triaxial rotor, wobbling motion was proposed by Bohr and Mottelson, $^{1)}$ and experimental data showing wobbling modes have been reported only in odd-Z nuclei of Lu isotopes,²⁾ ¹⁶⁷Ta,³⁾ and ¹³⁵Pr.⁴) The wobbling motion is originally defined in classical mechanics⁵) as a precessional motion of angular momentum \vec{I} around the axis either with the maximum or the minimum moment of inertia (MoI) of the rotating body. Quantum mechanically, the incremental alignment of \vec{I} along the wobbling axis with the maximum or the minimum MoI is in one $unit^{1,6,7}$. In odd-Z nuclei, we found that in addition to the incremental alignment of \vec{I} along the wobbling axis, the incremental alignment of $\vec{R} = \vec{I} - \vec{j}$ along the same axis is also in one unit (see Fig. 9 and Fig. 15 in Ref. 7)), where \vec{i} is the single-particle angular momentum. Moreover, the D_2 invariance requires that the yrast wobbling band appears for the levels for which I - i = odd.

The microscopic theory for nuclear rotational mo-

Fig. 1. Alignments of $\langle R_x^2 \rangle^{1/2}$, $\langle R_y^2 \rangle^{1/2}$, and $\langle R_z^2 \rangle^{1/2}$ for the *I*-dependent MoI as functions of *I*. The solid and open circles correspond to $\langle R_x^2 \rangle^{1/2}$ and $\langle R_y^2 \rangle^{1/2}$, while solid and open triangles correspond to $\langle R_z^2 \rangle^{1/2}$. The solid lines are for the levels with I - j=even, while the dashed lines for those with I - j=odd.

tion includes an important Coriolis anti-pairing (CAP) effect,⁸⁾ *i.e.*, the Coriolis force originating from the rotation starts to dissolve the pair in the special high-spin single-particle orbital, and finally the cranking formula for MoI reduces to the rigid (rig) MoI. We have obtained the analytical formula for the *I* dependence of MoI⁹⁾ for both odd- and even-Z nuclei by applying the second-order perturbation approximation to the self-consistent Hartree-Fock-Bogoliubov (HFB) equation under the number and *I* constraints. To simulate the behavior of the *I* dependence of MoI, we assume a two-parameter fit for the rigid MoI \mathcal{J}_0 , $\mathcal{J}_0(I-b)/(I+a)$ for highly excited states as in Lu isotopes,⁶⁾ and $\mathcal{J}_0/[1 + \exp\{-(I-b)/a\}]$ for slightly excited states as in ¹³⁵Pr.⁷⁾

Figure 1 shows the alignments of \vec{R} for the case of the slightly excited states in ¹³⁵Pr, where the *x*axis represents the maximum MoI. The parameter set $\mathcal{J}_0=25 \text{ MeV}^{-1}$, a=7.5 and b=15.5 for j=11/2 simulates the experimental data quite well (see Figs. 17 and 18 in Ref. 7)). Figure 1 shows that $\langle R_x^2 \rangle_I^{1/2} \sim \langle R_x^2 \rangle_I^{1/2}$ for I - j =even and $\langle R_x^2 \rangle_{I+2}^{1/2} - \langle R_x^2 \rangle_I^{1/2} \sim 2$. Therefore, the difference of $\langle R_x^2 \rangle_I^{1/2}$ between the solid and dashed lines is almost one, indicating that the incremental alignment of $\langle R_x^2 \rangle^{1/2}$ for I - j=even, which is associated with the excitation of the wobbling motion. A similar behavior is found for $\langle I_x^2 \rangle^{1/2}$ in this *I*-dependent rig MoI.

Because the wobbling mode is related to the rotational motion of the rotor, the RPA treatment, which is useful for small-amplitude vibrational motion, is not applicable to the wobbling mode.

References

- A. Bohr, B. R. Mottelson, in *Nuclear Structure*, (Benjamin, Reading, MA, 1975), **II**, Chap. 4, pp.190–194.
- 2) S. W. Ødegård et al., Phys. Rev. Lett. 86, 5866 (2001).
- 3) D. J. Hartley et al., Phys. Rev. C 80, 041304(R) (2009).
- 4) J. T. Matta, et al., Phys. Rev. Lett. 114, 082501 (2015).
- L. D. Landau, E. M. Lifshitz, in *Mechanics*, (Pergamon Press Ltd., Oxford/London, 1960), Sect. 37, pp.116– 121.
- K. Tanabe, K. Sugawara-Tanabe, Phys. Rev. C 77, 064318 (2008).
- K. Tanabe, K. Sugawara-Tanabe, Phys. Rev. C 95, 064315 (2017).
- B. R. Mottelson, J. G. Valatin, Phys. Rev. Lett. 5, 511 (1960).
- 9) K. Tanabe, K. Sugawara-Tanabe, Phys. Rev. C 91, 034328 (2015).

[†] Condensed from the talk in Int. Symp. on "Perspectives of the physics of nuclear structure", Nov. 1-4, The Univ. of Tokyo (2017)

^{*1} RIKEN Nishina Center

^{*2} Department of Information Design, Otsuma Women's University

^{*&}lt;sup>3</sup> Department of Physics, Saitama University