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nuclei: Case studies of local density approximation and generalized
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The exchange (x) and correlation (c) energy den-
sity functionals Ex [ρ] and Ec [ρ] formulated for elec-
tron systems are tested in the context of atomic nuclei,
respectively. Both the local density approximation
(LDA) and generalized gradient approximation (GGA)
functionals are investigated. For quantitative calcu-
lations, we employed the experimental charge-density
distributions ρch

1) of the selected nuclei as inputs of
ground-state density distributions.
When it is assumed that the energy density εi de-

pends only on the density at r locally as

Ei [ρ] =

∫
εi (ρ (r)) ρ (r) dr (i = x, c), (1)

this approximation is called the LDA. In the GGA,
the energy density depends not only on the density
distribution ρ but also on its gradient |∇ρ| at r locally
as

Ei [ρ] =

∫
εi (ρ (r) , |∇ρ (r)|) ρ (r) dr (i = x, c).

(2)
The GGA exchange energy density weighted with

ρch (r) for 208Pb is shown in Fig. 1. The LDA re-
sult is shown with the long-dashed line, and those
given by the GGA functionals B88,2) PW91,3) PBE,4)

and PBEsol5) are shown with the short-dashed, dot-
dashed, solid, and dot-dot-dashed lines, respectively.
The surface is defined as the region that has a density
between 90% and 10% of the maximum density.
For the exchange Coulomb energies, it is found that

the deviation between the LDA and GGA,

∆Ex =
EGGA

x − ELDA
x

EGGA
x

, (3)

ranges from around 11% in 4He to around 2.2% in
208Pb, by taking the PBE functional as an example
of the GGA. From light to heavy nuclei, it is seen that
∆Ex shown in Fig. 2 behaves in a very similar way as
the deviation between the Hartree-Fock-Slater approx-
imation and the exact Hartree-Fock given by Le Bloas
et al .6) In this sense, the GGA exchange functionals
of electron systems can be applied in a straightfor-
ward manner with practical accuracy to atomic nuclei.
Furthermore, the numerical cost of GGA is O

(
N3

)
,

whereas that cost of exact Hartree-Fock is O
(
N4

)
for

† Condensed from the article in Phys. Rev. C 97,
044319 (2018)

∗1 Department of Physics, the University of Tokyo
∗2 RIKEN Nishina Center

−0.05

−0.04

−0.03

−0.02

−0.01

0

0 2 4 6 8 10

Surface

208
Pb

ε
x
ρ
ch

(M
eV

fm
−
3 )

r (fm)

LDA

B88

PW91

PBE

PBEsol

Fig. 1. GGA exchange energy densities weighted with ρch
for 208Pb as a function of r.
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Fig. 2. Deviation between the LDA and GGA in Ex defined

as Eq. (3) as a function of A.

self-consistent calculations. In contrast, the correla-
tion Coulomb energy density functionals of electron
systems are not applicable for atomic nuclei, because
these functionals are not separable and the nuclear in-
teraction determines the properties of atomic nuclei.
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Effect of pairing on the wobbling motion in odd-A nuclei†

K. Sugawara-Tanabe1,2 and K. Tanabe3

As an indicator of a triaxial rotor, wobbling motion
was proposed by Bohr and Mottelson,1) and experi-
mental data showing wobbling modes have been re-
ported only in odd-Z nuclei of Lu isotopes,2) 167Ta,3)

and 135Pr.4) The wobbling motion is originally defined
in classical mechanics5) as a precessional motion of an-
gular momentum I⃗ around the axis either with the
maximum or the minimum moment of inertia (MoI)
of the rotating body. Quantum mechanically, the in-
cremental alignment of I⃗ along the wobbling axis with
the maximum or the minimum MoI is in one unit1,6,7).
In odd-Z nuclei, we found that in addition to the in-
cremental alignment of I⃗ along the wobbling axis, the
incremental alignment of R⃗ = I⃗ − j⃗ along the same
axis is also in one unit (see Fig. 9 and Fig. 15 in
Ref. 7)), where j⃗ is the single-particle angular momen-
tum. Moreover, the D2 invariance requires that the
yrast wobbling band appears for the levels for which
I − j=odd.

The microscopic theory for nuclear rotational mo-
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Fig. 1. Alignments of ⟨R2
x⟩1/2, ⟨R2

y⟩1/2, and ⟨R2
z⟩1/2 for

the I-dependent MoI as functions of I. The solid and

open circles correspond to ⟨R2
x⟩1/2 and ⟨R2

y⟩1/2, while
solid and open triangles correspond to ⟨R2

z⟩1/2. The

solid lines are for the levels with I − j=even, while the

dashed lines for those with I − j=odd.
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tion includes an important Coriolis anti-pairing (CAP)
effect,8) i.e., the Coriolis force originating from the ro-
tation starts to dissolve the pair in the special high-
spin single-particle orbital, and finally the cranking
formula for MoI reduces to the rigid (rig) MoI. We
have obtained the analytical formula for the I depen-
dence of MoI9) for both odd- and even-Z nuclei by
applying the second-order perturbation approximation
to the self-consistent Hartree-Fock-Bogoliubov (HFB)
equation under the number and I constraints. To
simulate the behavior of the I dependence of MoI,
we assume a two-parameter fit for the rigid MoI J0,
J0(I − b)/(I + a) for highly excited states as in Lu
isotopes,6) and J0/[1 + exp{−(I − b)/a}] for slightly
excited states as in 135Pr.7)

Figure 1 shows the alignments of R⃗ for the case
of the slightly excited states in 135Pr, where the x-
axis represents the maximum MoI. The parameter set
J0=25 MeV−1, a=7.5 and b=15.5 for j=11/2 simu-
lates the experimental data quite well (see Figs. 17 and

18 in Ref. 7)). Figure 1 shows that ⟨R2
x⟩

1/2
I ∼ ⟨R2

x⟩
1/2
I

for I − j =even and ⟨R2
x⟩

1/2
I+2 − ⟨R2

x⟩
1/2
I ∼2. There-

fore, the difference of ⟨R2
x⟩1/2 between the solid and

dashed lines is almost one, indicating that the incre-
mental alignment of ⟨R2

x⟩1/2 for I − j=odd is less by
one unit compared with that for I − j=even, which
is associated with the excitation of the wobbling mo-
tion. A similar behavior is found for ⟨I2x⟩1/2 in this
I-dependent rig MoI.

Because the wobbling mode is related to the rota-
tional motion of the rotor, the RPA treatment, which
is useful for small-amplitude vibrational motion, is not
applicable to the wobbling mode.
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