First observation of ${}^{20}B$ and ${}^{21}B^{\dagger}$

S. Leblond,^{*1} F. M. Marqués,^{*1} J. Gibelin,^{*1} N. A. Orr,^{*1} Y. Kondo,^{*2} T. Nakamura,^{*2} J. Bonnard,^{*3} N. Michel,^{*4,*5} N. L. Achouri,^{*1} T. Aumann,^{*6,*7} H. Baba,^{*8} F. Delaunay,^{*1} Q. Deshayes,^{*1} P. Doornenbal,^{*8} N. Fukuda,^{*8} J. W. Hwang,^{*9} N. Inabe,^{*8} T. Isobe,^{*8} D. Kameda,^{*8} D. Kanno,^{*2} S. Kim,^{*9} N. Kobayashi,^{*2} T. Kobayashi,^{*10} T. Kubo,^{*8} J. Lee,^{*8} R. Minakata,^{*2} T. Motobayashi,^{*8} D. Murai,^{*11} T. Murakami,^{*12}

K. Muto,^{*10} T. Nakashima,^{*2} N. Nakatsuka,^{*12} A. Navin,^{*13} S. Nishi,^{*2} S. Ogoshi,^{*2} H. Otsu,^{*8} H. Sato,^{*8}

Y. Satou,^{*9} Y. Shimizu,^{*8} H. Suzuki,^{*8} K. Takahashi,^{*10} H. Takeda,^{*8} S. Takeuchi,^{*8} R. Tanaka,^{*2}

Y. Togano,^{*2,*7} A. G. Tuff,^{*14} M. Vandebrouck,^{*3} and K. Yoneda^{*8}

It is well established that the shell structure of the nucleus, that leads to an enhanced stability for systems with "magic" numbers of protons (Z) and/or neutrons (N) of 2, 8, 20... is modified as the limits of particle stability, or driplines, are approached. Neutron numbers between 8 and 20 correspond to the filling of the sdshell neutron single-particle orbitals. Approaching the driplines, the energies of these orbitals evolve, leading for example to the disappearance of the N = 20 magic number for Z = 10-12 and to the appearance of new shell closures at N = 14, 16 in the oxygen isotopes. In this respect, the most neutron-rich boron isotopes, which lie below doubly-magic ^{22, 24}O and straddle the neutron dripline, are of considerable interest.

After removing one or two nucleons from secondary beams of ^{22}N and ^{22}C , produced at the RIBF of the RIKEN Nishina Center, with a carbon reaction target, beam-velocity ¹⁹B fragments and neutrons were detected in the forward direction using the SAMU-RAI setup including the NEBULA neutron array. The relative energy between the ¹⁹B fragment and the first detected neutron is shown in Fig. 1. A prominent resonance-like structure was observed at about 2.5 MeV above the one-neutron decay threshold (Fig. 1) that, guided by theoretical considerations, has been identified as the 1^- , 2^- ground-state doublet of ²⁰B, with energies $E_r = 1.56 \pm 0.15$ and 2.50 ± 0.09 MeV. A weaker higher-lying peak was also observed at 4.86 ± 0.25 MeV.

The data acquired for ²¹B in the ¹⁹B plus one-(Fig. 1) and two-neutron channels were consistent with the population of a resonance 2.47 ± 0.19 MeV above

- *3 Institut de Physique Nucléaire, Orsay
- *4NSCL/FRIB Laboratory, Michigan State University
- *5 School of Physics, Peking University
- *6Institut für Kernphysik, Technische Universität Darmstadt
- *7 ExtreMe Matter Institute EMMI, GSI
- *8**RIKEN** Nishina Center
- *9 Department of Physics and Astronomy, Seoul National University
- *10 Department of Physics, Tohoku University
- *11 Department of Physics, Rikkyo University
- *¹² Department of Physics, Kyoto University
- *13 GANIL, CEA/DRF-CNRS/IN2P3
- $^{\ast 14}$ Department of Physics, University of York

Fig. 1. Relative energy spectrum of ${}^{19}B+n$ events following proton-removal from ²²N (gray) and ²²C (hatched histogram). The gray dotted line in the inset delineates the neutron dripline.

the two-neutron emission threshold, and thus tentatively assigned to be the expected $3/2^{-}$ ground state. These results allowed the first determinations to be made of the ground-state masses of ^{20, 21}B, which are in agreement with the extrapolations of the most recent atomic-mass evaluations taking into account the ¹⁹B, ²²C and ²³N mass measurements. In this spirit, the present ^{20, 21}B masses will permit mass-surface extrapolations in this region to be made with improved precision and further from stability. In addition, ²¹B was found to exhibit direct two-neutron decay.

The identification and first spectroscopy of ^{20,21}B opens the way to the exploration of structure and correlations beyond the dripline below ²⁴O. In particular, improvements in secondary-beam intensities and neutron detection should permit n-n correlations in the decay of ²¹B to be investigated and its first excited state to be located. This, coupled with work underway to investigate the excited states of ²²C, will provide direct insights into the N = 16 shell closure beyond the neutron dripline as well as stringent tests of a new generation of *ab initio* and related theoretical models.

Condensed from the article in Phys. Rev. Lett. 121, 262502 (2018), see also references therein.

^{*1} LPC-Caen

^{*2} Department of Physics, Tokyo Institute of Technology