Magnetic ordered states of hole-doped pyrochlore iridates $(Y_{1-x-y}Cu_xCa_y)_2Ir_2O_7$ investigated by μ SR

J. Angel, *1,*2 K. Matsuhira, *3 and I. Watanabe *1,*2

The interplay between electron-electron correlation and spin-orbit coupling interaction leads to various exotic states in iridates such as Mott insulator, spin liquid, and Weyl semimetal.¹⁾ Pyrochlore iridates, R_2 Ir₂O₇ (R = Y and lanthanides) exhibit a largely systematic metal-insulator transition (MIT) among pyrochlore systems and is observed with accompanying magnetic transition by changing R ion. The Ir atom is expected to play a critical role because Ir has the large spinorbit coupling effect, which is predicted to cause exotic magnetic properties in R_2 Ir₂O₇. Among R_2 Ir₂O₇, Mott insulator $Y_2Ir_2O_7$ (Y^{3+} : non-magnetic; Ir^{4+} : $5d^5$) is an ideal system for the investigation of the magnetic properties of the Ir atom to clarify its origin. This is because the Y atom does not possess any localized magnetic moments and exhibits the all-in allout magnetic ground state below the MIT temperature of approximately 170 K.^{2–4)} Further, the mechanism of MIT should also be studied by doping holes to the system.^{5–7)} A key issue on the Mott insulator is the holedoping effect; therefore, we investigated the changes in the magnetic properties of $(Y_{1-x-y}Cu_xCa_y)_2Ir_2O_7$ (x = 0.05) in which the hole concentration can be controlled by substituting Ca for Y.

The μ SR measurement in the zero-field condition (ZF- μ SR) was carried out at the RIKEN-RAL Muon Facility, Rutherford-Appleton Laboratory, in the UK using a pulsed positive muon beam. We measured the ZF- μ SR time spectra of polycrystalline samples, $(Y_{1-x-y}Cu_xCa_y)_2Ir_2O_7$ (x = 0.05) and analyzed them using the following analysis function.

$$A(t) = A_0 e^{-\lambda t} \tag{1}$$

In Eq. (1), A(t) is the asymmetry of the muon-spin polarization at t, A_0 is the initial asymmetry at t = 0, and λ is the depolarization rate of the asymmetry parameter.

Figure 1 shows the temperature dependence of A_0 measured on $(Y_{1-x-y}Cu_xCa_y)_2Ir_2O_7$ (x = 0.05) at various values of y. Sudden decreases in A_0 were observed with a decrease in the temperature of the samples up to y = 0.10. This decrease in A_0 was not observed for y = 0.20 in the metallic state. The decrease implies the appearance of the fast depolarizing component caused by the slowing down of the fluctuations of Ir spins. The dashed lines in Fig. 1 indicate the onset temperatures of the appearance of the magnetically ordered state in $(Y_{1-x-y}Cu_xCa_y)_2Ir_2O_7$ (x = 0.05). It is clear that the magnetically changes in the electronic state from insulating to metallic. This study will be soon published.

Fig. 1. Temperature dependence of initial asymmetry, A_0 for $(Y_{1-x-y}Cu_xCa_y)_2Ir_2O_7$ obtained from zero-field μ SR measurements.

References

- W. Witczak-Krempa *et al.*, Annu. Rev. Condens. Matter Phys. 5, 57 (2014).
- 2) S. M. Disseler et al., Phy. Rev. B 86, 014428 (2012).
- D. Yanagishima, Y. Maeno, J. Phys. Soc. Jpn. 70, 2880 (2001).
- N. Taira, M. Wakeshima, Y. Hinatsu, J. Phys. Condens. Matt. 13, 5527 (2001).
- H. Fukazawa, Y. Maeno, J. Phys. Soc. Jpn. 71, 2578 (2002).
- 6) L. Savary et al., Phys. Rev. X 4, 041027 (2014).
- 7) W. K. Zhu et al., Phys. Rev. B 90, 054419 (2014).

^{*1} RIKEN Nishina Center

 ^{*2} Department of Condensed Matter Physics, Hokkaido University
*3 Creducto School of Engineering, Kuushu Institute of Tech

 $^{^{\}ast 3}~$ Graduate School of Engineering, Kyushu Institute of Technology