Coprecipitation experiment of element 102, No, with $Sm(OH)_3$ using NH₃ and NaOH solution

H. Ninomiya,^{*1} Y. Kasamatsu,^{*1} S. Hayami,^{*2} M. Nagase,^{*2} Y. Shigekawa,^{*1} N. Kondo,^{*1} E. Watanabe,^{*1} H. Haba,^{*3} T. Yokokita,^{*3} Y. Komori,^{*3} D. Mori,^{*3} Y. Wang,^{*3} K. Ghosh,^{*3} N. Sato,^{*3} and A. Shinohara^{*1}

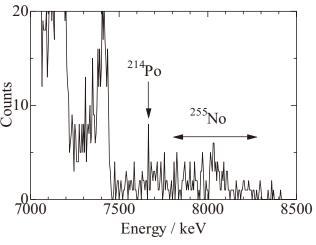
Heavy elements are expected to have the characteristic chemical properties in the periodic table owing to significant relativistic effects on their orbital electrons. From the previous cation-exchange studies on element 102, noberium (No) in HCl, the most stable ion valency of No in aqueous solution is reported to be +2, although that of other heavy actinide elements is $+3.^{1,2}$ However, it is difficult to investigate the chemical behavior of heavy elements. Heavy elements with $Z \ge 101$ are synthesized by heavy-ion-induced nuclear reactions with very low production rates and their half-lives are short.³⁾ Thus, the chemical experiments of these elements must be rapidly conducted on one-atom-at-a-time basis using nuclear reaction products transported from the target chamber by a He/KCl gas-jet system. Additionally, for unambiguous identification of a single atom, detection of α particle is required. Owing to these difficulties, there are a few reports on solution chemical experiments of No. In the tri-n-octylamine chloride extraction system and cationexchange experiment in HCl, the elution behavior of No was reported to be similar to that of alkaline earth metals.⁴⁾ To deepen the understanding of the chemical properties of No, we aim at investigating a precipitation of nobelium hydroxide.

In previous studies, we newly developed coprecipitation method with samarium hydroxide to investigate the hydroxide and ammine complexation properties of heavy elements.⁵⁾ Then, we succeeded in conducting the coprecipitation experiment of element 104, Rf, in $\rm NH_3$ and $\rm NaOH$ solutions using the developed suction filtration apparatus. In this study, by applying the coprecipitation method, we performed online coprecipitation experiment of ²⁵⁵No to investigate the precipitation behavior of nobelium hydroxide.

We produced ²⁵⁵No $(T_{1/2} = 186 \text{ s})$ and ¹⁶²Yb $(T_{1/2} = 18.9 \text{ min})$ by ²⁴⁸Cm $(^{12}\text{C}, 5n)^{255}$ No and ^{nat}Gd $(^{12}\text{C}, xn)^{162}$ Yb reactions with AVF cyclotron at RIKEN. The reaction products were transported by the He/KCl gas-jet system to the chemistry room and dissolved in dilute HCl solution. In the case of making precipitated sample, 20 μ g of Sm and 2 mL of the basic solution (dilute or concentrated aqueous NH_3 or 0.10 or 1.0 M NaOH solution) was added into the dissolved solution in the PP beaker and stirred for 5 min at room temperature. Then, the solution containing the precipitate was filtrated using the suction filtration appara-

20 ²¹⁴Po Counts ²⁵⁵No 7000 8500 7500 8000 Energy / keV

Fig. 1. α -spectra for ²⁵⁵No standard samples.


tus controlled by PC. In the case of making standard sample, the reaction products were dissolved in dilute HCl solution and the solution was put on a Ta plate. Then, these precipitated and standard samples were dried and subjected to alpha particle measurement by the automated rapid α /SF detection system. After alpha particle measurement, γ -ray activities of ¹⁶²Yb in the samples were measured with Ge detectors.

We successfully prepared 51 coprecipitated samples and 48 standard samples. In the alpha-particle measurement (Fig. 1), we detected 243 events for 255 No. The cross-section of ²⁵⁵No was estimated to be approximately 450 nb and the value was consistent with that obtained in the previous report.⁶) High precipitation vields of No were obtained and the detailed evaluation is now under analysis.

In future, we will discuss the hydroxide complexation properties of ²⁵⁵No based on the comparison of the coprecipitation behavior of ²⁵⁵No with those of alkaline earth metal elements.

References

- 1) J. Maly, T. Sikkeland, R. Silva, A. Ghiorso, Science 160, 1114 - 1115 (1963).
- 2) G. T. Seaborg, in The Transuranium Elements, (McGraw-Hill, New York, 1949).
- 3) M. Schädel, Radiochim. Acta 100, 579 (2012).
- 4) R. J. Silva, W. J. Mcdowell, O. L. Keller, et al., J. Inorg. Nucl. Chem. 38, 1207–1210 (1976).
- Y. Kasamatsu, et al., Appl. Radiat. Isot. 118, 105-116 (2016).
- 6)T. Sikkeland, A. Ghirso, M. J. Nurmia, Phy. Rev. 172, 1232-1238 (1968).

^{*1} Graduate School of Science, Osaka University

^{*2} Faculty of Science, Osaka University

^{*3} **RIKEN** Nishina Center