Y. Kanayama,^{*1} K. Sakamoto,^{*2} E. Ebisui,^{*3} Y. Wang,^{*4} T. Yokokita,^{*4} Y. Komori,^{*4} D. Mori,^{*4} H. Haba,^{*4} and Y. Watanabe^{*1}

Radiotherapeutic agents labeled with various α emitting nuclides have been developed for targeted alpha therapy. ²¹¹At has a simple decay scheme and can avoid the risk of side effects caused by daughter nuclides; it is thus considered a useful α -emitter for this therapy. Given the requirements for ²¹¹At-labeled pharmaceuticals in the future, RIKEN Nishina Center for Accelerator-Based Science aims to increase the ²¹¹At production scale a global maximum; this prompted us to develop ²¹¹At-labeled drugs and labeling methods.

For the attachment of ²¹¹At, organotin compounds are the most widely used precursor owing to the weakness of the carbon-tin bond, which enables the use of a tin group as a leaving group.¹⁾ In this study, we used an organotin compound, N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), for ²¹¹At labeling. According to the direct astatination procedure reported by Lindegren *et al.*,²⁾ m-MeATE was first conjugated with a monoclonal IgG. Then, m-MeATE and IgG were mixed at a molar ratio of 20:1 and incubated for 30 min at 25°C in a pH-8.5 NaCO3 buffer. The attachment of ²¹¹At was carried out by a modified protocol of the method of Li $et al.^{(3)}$ An oxidizing agent N-chlorosuccinimide (NCS) (0.2 mg/ml) was added to the 211 At solution in 1% acetic acid MeOH. Then an IgG/m-MeATE conjugate in a 0.2 M sodium acetate buffer was mixed with the activated $^{211}\mathrm{At}$ solution, with the final MeOH and NCS concentrations being 11% and $3.6 \ \mu g/ml$, respectively. The incubation was performed for 3 min. N-iodosuccinimide (0.2 mg/ml) was then added at a final concentration of 5.4 μ g/ml, and the reaction mixture was incubated for another 1 min. For purification, an Amicon Ultra 50 kDa column (Merck) was used in ultrafiltration.

Finally, 5.6 MBq of ²¹¹At-labeled IgG was obtained using 40 MBq of ²¹¹At-MeOH (shown in Table 1). In this experiment, we did not reach the labeling yield that Li *et al.* reported previously $(40.2 \pm 6.9\%)$.³⁾ Further, we examined the use of a PD Spintrap G-25 gel filtration column for purification, only to reduce the yield.

To demonstrate the usefulness of the ²¹¹At-labeled IgG, we performed a biodistribution study using the mice with xenografted tumors specific to IgG. Three and 24 h after the ²¹¹At-labeled IgG i.v. injections, the mice were dissected to measure tissue radioactivity. As a control group, free ²¹¹At was also administered. The results are shown in Fig. 1. Unexpectedly, the distribution of ²¹¹At-labeled IgG was almost the same as that of

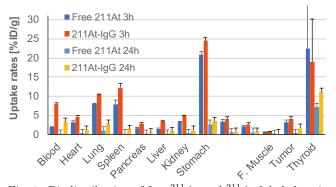


Fig. 1. Biodistribution of free ²¹¹At and ²¹¹At-labeled antibody 3 and 24 h after i.v. injection in the tumor-bearing mice.

Table 1. Labeling results of ²¹¹At-labeled IgG purified by ultrafiltration or gel filtration.

Purification	Radioactivity	Protein yield	Specific activity
method	yield [%]	[%]	[kBq/ug]
Ultrafiltration	13.9	75.0	12.9
Gel filtration	5.0	69.5	14.9

Table 2. Labeling results of ²¹¹At-labeled IgG or IgG/m-MeATE purified by reduced nonspecific binding gel.

Precursor	Radioactivity yield [%]	Protein yield [%]	Specific Activity [kBq/ug]
IgG/m-MeATE	43.9	85.6	31.6
Intact IgG	12.9	79.3	12.5

free 211 At. The high accumulation rates in the stomach and thyroid indicated the physiological accumulation of 211 At detached from IgG.

From these results, we speculated that the increased hydrophobicity by astatination may have caused the nonspecific binding of ²¹¹At-labeled IgG to column filters or gels in the purification step, resulting in a low radioactivity yield despite a high protein yield. To overcome this problem, we used a specialized gel to alleviate nonspecific binding. As shown in Table 2, the radioactivity yields were significantly improved.

In the next step, we will examine a labeling method using decaborane, which is expected to have a higher stability in bonding with ²¹¹At in the body.

References

- F. Guerard *et al.*, Cancer Biother. Radiopharm. 28, 1 (2013).
- 2) S. Lindegren et al., J. Nucl. Med. 49, 1537 (2008).
- 3) H. K. Li et al., Cancer Sci. 108, 1648 (2017).

 $^{^{\}ast 1}$ Laboratory for Pathophysiological and Health Science, RIKEN

 $^{^{\}ast 2}$ $\,$ Laboratory for Nonnatural Amino Acid Technology, RIKEN

^{*&}lt;sup>3</sup> Liver Cancer Prevention Research Unit, RIKEN

^{*4} RIKEN Nishina Center