Activation cross sections of α -induced reactions on ^{nat}Zn for Ge and Ga production[†]

M. Aikawa,^{*1,*2} M. Saito,^{*3,*2,*4} S. Ebata,^{*1,*5} Y. Komori,^{*2} and H. Haba^{*2}

Gallium-68 ($T_{1/2} = 67.71$ min) is used in positron emission tomography (PET). The production of ⁶⁸Ga is important for its application in PET. In addition to ⁶⁸Ga, the production of its long-lived parent, ⁶⁸Ge ($T_{1/2} = 270.95$ d), is worthy of investigation for a ⁶⁸Ga generator. One of the reactions to produce ⁶⁸Ge is the α -induced reaction on ^{nat}Zn. Two sets of experimental data^{1,2}) could be found in the EXchange FORmat (EXFOR) library. The two datasets deviate from each other. Therefore, we measured the cross sections of α -induced reactions on ^{nat}Zn for ⁶⁸Ge production.

The experiment was performed at the AVF cyclotron of the RIKEN RI Beam Factory using standard methods, stacked foil activation method, and off-line γ -ray spectrometry. Thin metallic foils of ^{nat}Zn (99.9% purity, Nilaco Corp., Japan) and ^{nat}Ti (99.6% purity, Nilaco Corp., Japan) were stacked as the target. The stacked target was irradiated by a 51.5 MeV α beam. The incident beam energy was measured by the timeof-flight method using a plastic scintillator monitor.³⁾ The irradiation of the α beam lasted for 2 hours. The average intensity was 82.0 nA, which was measured by a Faraday cup. The decrease in the energy of projectiles in the target was estimated using the SRIM code.⁴⁾ γ spectra from the irradiated foils were measured with a high-resolution HPGe detector.

To assess the beam parameters and target thicknesses, the cross sections of the ^{nat}Ti(α, x)⁵¹Cr monitor reaction were derived. Consequently, we could confirm that our results were significantly consistent with the recommended values.⁵⁾

The 1077.34-keV γ -line ($I_{\gamma} = 3.22\%$) from the ⁶⁸Ga decay was measured after a long cooling time of approximately 80 days. Directly produced ⁶⁸Ga could completely get decayed in this period and the decay of ⁶⁸Ga was in equilibrium with that of its parent ⁶⁸Ge. The cross sections of ⁶⁸Ge are shown in Fig. 1 with previous experimental data^{1,2)} and TENDL-2017 data.⁶⁾ The peak position of our result is consistent with the experimental data, although the amplitude is slightly larger. The tendency of TENDL-2017 data is different from the experimental data.

The integral yield of 68 Ge was estimated from the

- ^{*1} Faculty of Science, Hokkaido University
- *² RIKEN Nishina Center
- *³ Graduate School of Science, Hokkaido University
- *4 Present address: Graduate School of Biomedical Science, Hokkaido University
 *5 Present address: School of Environment and Society Tolyto
- *5 Present address: School of Environment and Society, Tokyo Institute of Technology

Fig. 1. Excitation function of $^{nat}Zn(\alpha, x)^{68}Ge$ reaction.

Fig. 2. Integral yield of ⁶⁸Ge.

cross sections measured in this work and stopping powers calculated by the SRIM code.⁴⁾ The derived integral yield is shown in Fig. 2 with the previously obtained experimental data.^{1,2)} The values obtained in our result are greater than other data above 30 MeV as expected from the cross sections measured in this work.

References

- 1) F. J. Haasbroek et al., CSIR Res. Rep. FIS 91, 1 (1976).
- Y. Nagame *et al.*, Int. J. Appl. Radiat. Isot. **29**, 615 (1978).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC2014), 3566 (2014).
- 4) SRIM: the Stopping and Range of Ions in Matter, http: //www.srim.org/.
- 5) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2017).
- 6) A. J. Koning et al., Nucl. Data Sheets 113, 2841 (2012).

[†] Condensed from the article in Nucl. Instrum. Methods Phys. Res. B **427**, 91 (2018)