Particle identification in $^{11}\text{Li}(p, n)$ experiment at SAMURAI

Y. Hirai,1,2 L. Stuhl,2 M. Sasano,3 J. Gao,3,4 K. Yako,2 T. Wakasa,1 D. S. Ahn,3,5 H. Baba3,6 A. Chilug,5,6 S. Franchoo,6 Y. Fujino,7 J. Gibein,6 I. S. Hahn,8 Z. Halasz,9 T. Harada,10 M. N. Harakeh11,12

D. Inomoto,4,11 T. Isobe,13 H. Kasahara11,13 D. Kim13 G. G. Kiss9 T. Kobayashi14 Y. Kondo15 Z. Korkulu3,13

S. Koyama,16,18 Y. Kubota13 A. Kurihara15,16 H. N. Liu17 M. Matsumoto15 S. Michimasa12 H. Miki15 M. Miwa18 T. Motobayashi13 T. Nakamura15 M. Nishimura5,6 H. Otsu3,13 V. Panin3,4 S. Park8

A. T. Saito15 H. Sakai3,13 T. Saito15 T. Shimada15 Y. Shimizu3,5 S. Shionoura3,2 A. Spiridon5 I. Stefanescu5

X. Sun3,17 Y. L. Sun17 H. Suzuki3 Y. Togano7 T. Tomai15,18 L. Trache3,2 D. Tudor5,6 T. Uesaka3,18

H. Yamada15 M. Yasuda15 K. Yoneda3,6 K. Yoshida3,6 J. Zenihiro3,6 and N. Zhang19,2

The details of the particle identification (PID) of the incoming secondary cocktail beam and the reaction residues in the SAMURAI30 experiment are reported.

A secondary cocktail beam of unstable ^{11}Li and ^{14}Be was produced via the fragmentation reaction of a 230 MeV/nucleon ^{18}O primary beam on a 14-mm-thick ^9Be target. In the experimental setup1,2 around the SAMURAI spectrometer,2 two 1-mm-thick plastic scintillators (SBT1,2) were installed for the detection of beam particles. The SBTs were used to produce the beam trigger (threshold was set to $Z > 2$). The beam PID was performed on an event-by-event basis by measuring the energy loss in the SBTs and the ToF of the beam particles in BigRIPS between F7 and F13. The secondary cocktail beam consisted of ^{11}Li at 182 MeV/nucleon with an intensity of 2.5×10^5 particle/s and ^{14}Be at 198 MeV/nucleon with an intensity of 1×10^5 particle/s with purities of 48% and 19%, respectively. The triton contamination was below 30%. Figure 1 shows the incoming beam PID spectrum.

The secondary beam was transported onto a 10-mm-thick liquid hydrogen target.3,4 The reaction residues entered SAMURAI after passing through the forward drift chamber, FDC0. The magnetic field of the spectrometer was set to 2.75 T. At the focal plane of SAMURAI, a wall (HODF24 detector) of 24 plastic scintillator bars with dimensions of $1200W \times 100D \times 10D$ mm3 was installed, to measure the trajectories, energy loss, and ToF (from SBTs) of the reaction residues. Further downstream, an additional wall, HODP, with 16 plastic bars (same as HODF24 bars) was installed. The 2 bars of HODF24 that were hit by the unreacted beam were excluded from the trigger. Figure 2 shows a typical PID spectrum in HODF24 for events generated by the ^{11}Li or ^{14}Be beams. Using the PID information, the reaction channels for $^{11}\text{Li}(p, n)^{11}\text{Be}$ and $^{14}\text{Be}(p, n)^{14}\text{B}$ can be identified.

Fig. 1. An incoming PID spectrum of the SBT detector. The separation of ^{11}Li and ^{14}Be is clear.

Fig. 2. A PID spectrum in the focal plane of SAMURAI, measured by one bar (bar ID = 7) of HODF24.

References
1) M. Sasano et al., in this report.
3) X. Sun et al., in this report.
4) M. Miwa et al., in this report.
5) L. Stuhl et al., in this report.
6) J. Gao et al., in this report.

- 29 -