Study of spin-isospin response of 11Li (SAMURAI30 experiment)

The spin-isospin responses of 11Li and 14Be neutron drip line nuclei were measured in charge-exchange (p,n) reactions. Until recently, only the spin-isospin collectivity in stable isotopes was investigated.1) There is no available data for nuclei with large isospin asymmetry factors, where ($N - Z)/A > 0.25$). The (p,n) reactions at intermediate beam energies ($E_B/A > 100$ MeV) and small scattering angles can excite Gamow-Teller (GT) states up to high excitation energies in the final nucleus, without Q-value limitation. The combined setup of PAN-DORA5 and SAMURAI spectrometer9 with a thick liquid hydrogen target (LHT)4 allowed us to perform the experiment with high luminosity. In this setup,5 PAN-DORA was used for the detection of the recoil neutrons while SAMURAI was used to tag the decay channel of the reaction residues.

The secondary cocktail beam of 11Li and 14Be was transported onto the 10 mm-thick LHT.6) The neutron detector setup on the left and right sides of LHT consisted of 27 PANDORA and 13 WINDS7) plastic scintillator bars. The neutron kinetic energies were deduced by the time-of-flight (ToF) technique (1.25 m flight path). The ToF time reference was taken from SBT1,2 plastic scintillators. The neutron kinetic energies were deduced by the reaction residues. The secondary cocktail beam of Be was transported onto the 10 mm-thick LHT.6) The neutron detector setup on the left and right sides of LHT consisted of 27 PANDORA and 13 WINDS7) plastic scintillator bars. The neutron kinetic energies were deduced by the time-of-flight (ToF) technique (1.25 m flight path). The ToF time reference was taken from SBT1,2 plastic scintillators. The left and right wings with respect to the beam line covered the laboratory recoil angular region of 47°–113° and 62°–134°, respectively, with 3.25° steps. PANDORA was optimized to detect neutrons with a kinetic energy of 0.1–5 MeV. The light output threshold was set to be 60 keV$_{ee}$. The digital data-acquisition (DAQ) of PANDORA was combined9 with standard

![Fig. 1. Recoil neutron energy spectrum as a function of scattering angle in the laboratory frame.](image)

DAQ of SAMURAI.

The reaction residues were momentum analyzed by the SAMURAI spectrometer, using HODF24 and HODP detectors.9) Figure 1 shows a preliminary plot of kinetic energy as a function of laboratory scattering angle for recoil neutrons associated with 11Li beam. We required the simultaneous detection of 9Li and d in HODF24 and neutron detection10) in PANDORA.

A clear kinematical correlation between the measured kinetic energy and the laboratory scattering angle, above 18 MeV excitation energy (E_x), was obtained. This forward scattering peak (2°–7° in the center-of-mass system) suggests a GT transition. The 9Li + d decay channel of 11Be is observed for the first time. Reconstruction of the excitation-energy spectrum up to about 30 MeV, including the GT giant resonance region, is ongoing.

References

4) X. Sun et al., in this report.
5) M. Sasano et al., in this report.
6) M. Miwa et al., in this report.
8) J. Gao et al., in this report.
9) Y. Hirai et al., in this report.
10) Y. Hirai et al., in this report.

1) Center for Nuclear Study, University of Tokyo
2) RIKEN Nishina Center
3) School of Physics, Peking University
4) Department of Physics, Kyushu University
6) Inst. de Physique Nuclaire, Univ. Paris-Saclay
7) Department of Physics, Rikkyo University
8) LPC CAEN
9) Department of Physics, Ewha Womans University
10) ATOMKI, Institute for Nuclear Research, HAS
11) Department of Physics, Toho University
12) KVI - CART, University of Groningen
13) GSI Helmholtzzentrum für Schwerionenforschung
14) Department of Physics, Korea University
15) Department of Physics, Tohoku University
16) Dept. of Physics, University of Tokyo
17) Dept. Physique Nucl., CEA, Univ. Paris-Saclay
18) Dept. of Physics, Saitsama University
19) Institute of Modern Physics, Chinese Acad. of Sci.