β decays of the heaviest N=Z-1 nuclei and proton instability of $$^{97}{\rm In}^{\dagger}$$

J. Park,^{*1,*2} R. Krücken,^{*1,*2} D. Lubos,^{*3,*4,*5} R. Gernhäuser,^{*3} M. Lewitowicz,^{*6} S. Nishimura,^{*4} and H. Sakurai^{*4,*7} for the EURICA Collaboration

Interesting nuclear structure phenomena can be observed at the limits of neutron or proton binding, providing sensitive probes of shell evolution and/or collective behaviors. Studies have found the doubly magic ¹⁰⁰Sn to be stable against proton emission, confirming the robustness of the N, Z = 50 shells. Searches for even more neutron-deficient nuclei below ¹⁰⁰Sn resulted in a discovery of new isotopes, while also reaching the proton dripline for Rh and Ag isotopes.¹

From a decay spectroscopy experiment at the RIBF, half-lives, β -decay endpoint energies, and β -delayed proton emission branching ratios of N = Z - 1 nuclei ⁹¹Pd, ⁹⁵Cd, ⁹⁷In and ⁹⁹Sn were measured with the wide-range active silicon strip stopper array for β and ion detection²⁾ (WAS3ABi). The results, summarized in Table 1, are consistent with β decays of mirror nuclei containing a mixture of Gamow-Teller and Fermi decay components.

The apparent stability of ⁹⁷In against proton emission was investigated. Based on the deficit in the β decay amplitude of the parent nucleus, an isomeric state in ⁹⁷In decaying to ⁹⁶Cd via one-proton emission was proposed. Although this decay branch has not been detected directly, the observation of a γ -ray transition belonging to the β decay of ⁹⁶Cd was a supporting evidence for the proton-emitting isomer. The missing proton events were hypothesized to have occurred in a time range between the ions' flight through the BigRIPS and ZeroDegree separators (~600 ns) and the 600- μ s deadtime of WAS3ABi.

From the shell model perspective, 97m In is formed by promoting a $\pi 1p_{1/2}$ proton into the $\pi 0g_{9/2}$ orbital, leaving an unpaired proton in the $\pi 1p_{1/2}$ orbital and resulting in a spin-parity of $(1/2^-)$. The large spin difference and parity change suppress a γ -ray decay branch to the $(9/2^+)$ ground state. Experimental halflife limits on the isomer were converted into a hypothetical proton energy range through a theory on proton emission.³⁾ As shown in Fig. 1, the lower angular momentum barrier for proton emission from the $\pi 1p_{1/2}$ orbital compared to the $\pi 0g_{9/2}$ orbital would facilitate proton emission from the isomer. This result is con-

- [†] Condensed from the article in Phys. Rev. C **97**, 051301(R) (2018)
- *1 Department of Physics and Astronomy, University of British Columbia
- *² TRIUMF

- *5 $\,$ Excellence Cluster Universe, Technische Universität München
- ^{*6} Grand Accélérateur National d'Ions Lourds (GANIL)

Table 1. Half-lives, β -decay endpoint energies, log ft values and β -delayed proton emission branching ratios of ⁹¹Pd, ⁹⁵Cd, ⁹⁷In and ⁹⁹Sn.

Nucleus	$T_{1/2} ({\rm ms})$	Q_{EC} (MeV)	$\log ft$	$b_{\beta p}$ (%)
⁹¹ Pd	32(3)	11.8(22)	3.4(5)	$3.0^{+1.1}_{-0.9}$
$^{95}\mathrm{Cd}$	32(3)	10.2(17)	3.1(5)	$4.5^{+1.2}_{-1.0}$
⁹⁷ In	28(5)	10.0(30)	3.0(9)	$1.7^{+1.7}_{-0.8}$
97m In	$1.3-230 \ \mu s$			
99 Sn	24(4)	14.7(36)	3.8(7)	$3.9^{+3.4}_{-1.7}$

Fig. 1. Left: theoretical $T_{1/2}$ as a function of emitted proton energy Q_p and orbital angular momentum l. Right: experimental proton separation energy S_p of the ground state of ⁹⁷In compared with different mass predictions.⁴⁻⁹

sistent with a few mass models which predict 97 In to undergo β decay as opposed to proton emission.

References

- 1) I. Čeliković et al., Phys. Rev. Lett. **116**, 162501 (2016).
- S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- D. S. Delion, R. J. Liotta, R. Wyss, Phys. Rep. 424, 113 (2006).
- 4) J. Duflo, A. P. Zuker, Phys. Rev. C 52, R23 (1995).
- P. Möller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
- S. Goriely, N. Chamel, J. M. Pearson, Phys. Rev. C 88, 061302(R) (2013).
- 7) H. Koura, T. Tachibana, M. Uno, M. Yamada, Prog. Theor. Phys. **113**, 305 (2005).
- 8) M. Wang et al., Chin. Phys. C 41, 030003 (2017).
- 9) H. Herndl, B. A. Brown, Nucl. Phys. A 627, 35 (1997).

 $^{^{\}ast 3}$ Physik Department, Technische Universität München

^{*4} RIKEN Nishina Center

^{*7} Department of Physics, University of Tokyo