Cross-section measurement of neutron-rich isotopes produced from an RI beam of 132Sn using a two-step scheme

H. Suzuki,∗1 K. Yoshida,∗1 N. Fukuda,∗1 H. Takeda,∗1 Y. Shimizu,∗1 D. S. Ahn,∗1 T. Sumikama,∗1 N. Inabe,∗1 T. Komatsubara,∗1 H. Sato,∗1 Z. Korkulu,∗1 K. Kusaka,∗1 Y. Yanagisawa,∗1 M. Ohtake,∗1 H. Ueno,∗1 S. Michimasa,∗2 N. Kitamura,∗2 K. Kawata,∗2 N. Imat,∗2 O. B. Tarasov,+,3,∗1 D. P. Bazin,∗3,∗1 T. Kubo,∗4,+,∗1 J. Nolen,∗5,+,∗1 and W. F. Henning∗5,+,∗1

The production cross sections of neutron-rich radioactive isotopes (RI), including 125–128Pd produced from a less-exotic RI beam of 132Sn, were measured using BigRIPS and ZeroDegree at the RIKEN RI Beam Factory (RIBF) in November 2017. A two-step reaction scheme was proposed1) for the efficient production of mid-heavy very-neutron-rich RIs. In this scheme, a long-lived neutron-rich RI such as 132Sn, whose half-life is 40 s, is produced by an ISOL in the first step, and accelerated by post-accelerators. In the second step, more exotic nuclei, such as 125–128Pd, are produced by a fragmentation reaction. With this scheme, one may obtain greater yields of very neutron-rich RIs than those obtained by direct production through the in-flight fission of a 238U beam, which is currently a very popular method to produce them. To evaluate the yields of RIs by the two-step scheme with a 132Sn beam, we measured the production cross sections of neutron-rich Pd isotopes beyond 125Pd, up to which the cross sections had already been measured at GSI together with the neighboring RIs.2)

In the experiment, the 132Sn beam was produced at BigRIPS by the in-flight fission of a 40-pnA 345-MeV/nucleon 238U$^{86+}$ beam impinging on a 4-mm-thick Be target. The 132Sn-beam energy was 278 MeV/nucleon, the intensity was 35 kHz, and the purity was 50%. The neutron-rich Pd isotopes were produced by the fragmentation with a 6-mm-thick Be target at the entrance of ZeroDegree. The particle identification (PID) was performed by deducing the atomic number Z, the mass-to-charge ratio A/Q, and the mass number A of the RIs based on the TOF-Bp-$

Fig. 1. The Z versus A/Q PID plot of 128Pd setting in ZeroDegree. Partially-stripped contaminants are included in the plot with the fully-stripped 127, 128Pd.

Fig. 2. The experimental cross sections of neutron-rich RIs produced from 132Sn beams at RIBF and GSI2) with cross-section formulae COFRA1.03) and EPAX3.1a.4) Both formulae reproduce the experimental cross sections fairly well. Further detailed analyses are in progress.

References