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Self-consistent constrained HFB in odd-A nucleif

K. Sugawara-Tanabe*!*2 and K. Tanabe*3

All existing constrained Hartree-Fock-Bogoliubov
(CHFB) calculations neglect the Fock or the exchange
terms. Here, the constraint conditions are applica-
ble to the proton number Z, neutron number N,
and the angular momentum along the chosen z-axis
(I.) = \/I(I+1). The numerical calculations start
from the spherical single-particle basis and include
the residual quadrupole-quadrupole (Q-Q), monopole-
pairing (MP), and quadruple-pairing (QP) interac-
tions.! In the approximation without the exchange
terms, only the terms Y7 and YZ + Y2, in the Q-
Q interaction are considered but the terms Y & Y2,
and Y$ — Y2, are not. We have developed the code
to include all exchange terms in the residual inter-
actions. The exchange terms of Q-Q contribute to
the self-energy I' and the gap A, and those of MP
and QP to I'. Then, the constraint on angular mo-
mentum (I,) becomes /I(I+1)— (I2). We chose
the signature invariant base that reduces the diagonal-
ization space to half?) because the total Hamiltonian
with three constraints H’ is invariant under the op-
erator R, = exp(—inl;). All input matrix elements
are rewritten in this base and the spherical single-
particle operator in this base C} is transformed to
quasiparticle operators aj = Z,DO(C);AM + C} Bri)
and ag = Zk>O(C£AM + CkBki), where the notation

k is the time reversal of k. Then, the CHFB equation
B*

becomes:
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where h' (h?) includes the spherical single-particle en-
ergy and self-energy I" and w is the Lagrange multiplier
for I, = Zk,l>0(jﬂ3)kvl(c}1 C— C;LC[). When there is
N0 Wjy, i.e., without constraint on (I,), h?, A, A, and
B are reduced to h', A, A, and B, respectively. The
iteration procedure in the numerical analysis is based
on the gradient method.?)

Figure 1 compares I versus transition energy AFE =
E(I)— E(I —2). The parameters are the same spheri-
cal single-particle energy as listed in Table 1 in Ref. 1).
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The strength of MP is GSFO_‘)_W_F = GSTOE,T_ = G‘(ITO-f)—ﬂ'— =
—0.22 MeV and Gl(,oll,+ = G,(,O,)l,, = Gl(,%,f =
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Fig. 1. Backbending plot for I as a function of energy dif-
ference AE = E(I) — E(I — 2). Experimental data is
taken from Ref. 4).

—0.23 MeV. The strength of QP is 10% of MP, ex-
pressed in terms of MeV/b* and the strength of QQ
is Xrr = —0.030 MeV/b%, x,, = —0.032 MeV/b?,
and Y, = —0.100 MeV/b* with an oscillator length
b. These numerical results are consistent with the ex-
perimental data except for the I = 15/2~ state. The
constraint on the proton number Z is effective but the
value of Z for + and — parity states is mixed owing
to GSPJZW_. For example, Z; = 13.58 and Z_ = 17.42
at I = 15/27, while Z, = 13.99 and Z_ = 17.01 at
I =55/27, where Z = Z, 4+ Z_ is the proton num-
ber outside the magic number 28. For better results,
another constraint on Z— should be included or the
MP and QP interactions between the + and — parity
states should be dropped. This calculation is prelim-
inary and there is room for finding better parameter
sets.
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