Verification test of $^{107}\mathrm{Pd}$ transmutation †

Y. Miyake,^{*1} N. Ikoma,^{*1} K. Takahashi,^{*1} Y. V. Sahoo,^{*1} and H. Okuno^{*1}

In a previous study, we reported the construction of an implantation beam line for 107 Pd transmutation.¹⁾ After that, 107 Pd was implanted into a carbon foil and irradiated by a deuteron beam. In this study, a verification test for the 107 Pd transmutation is reported.

 $^{107}\mathrm{Pd}$ ions were implanted into a carbon foil as $^{107}\mathrm{PdO^-}$ with an energy of 20 keV. This foil is a multilayer graphene sheet with a thickness of 360 $\mu\mathrm{g/cm^2}$ developed by KANEKA.²⁾ The amount of implanted $^{107}\mathrm{Pd}$ was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to be approximately 270 ng in a carbon foil. The $^{107}\mathrm{Pd}$ -implanted sample was irradiated by deuteron at 12 MeV/nucleon with a current of 1–2 particle $\mu\mathrm{A}$. The cumulative irradiation current was 1.09 C, which corresponds the irradiation with a beam current of 1 particle $\mu\mathrm{A}$ for 12.6 days.

After cooliing, γ -ray measurements were conducted. The γ -ray spectrum of the irradiated sample is shown in Fig. 1. γ -ray emitting from radionuclides of ⁷Be, ¹⁰⁵Ag, and ^{106m}Ag were detected. ⁷Be is produced from carbon, while ¹⁰⁵Ag and ^{106m}Ag are generated from the transmutation of ¹⁰⁷Pd. The activities of ¹⁰⁵Ag and ^{106m}Ag were calculated from the γ -ray spectrum of 345 keV and 450 keV, respectively. The activity was determined using the total net count of γ -ray peaks. The radioactivity was decay-corrected from the day when the deuteron irradiation finished. Considering the γ ray abundance of 0.41 at 345 keV and 0.28 at 450 keV, the activity was calculated to be 8.38×10^2 Bq and 4.98×10^4 Bq, which correspond with 0.8 pg of ¹⁰⁵Ag and 9.0 pg of ^{106m}Ag, respectively.³

Fig. 1. γ -ray spectrum of irradiated sample.

*1 RIKEN Nishina Center

Fig. 2. Isotopic ratio of $Pd/^{107}Pd$ of irradiated sample.

The production yield of nuclides per deuteron was calculated using the Particle and Heavy Ion Transport code System (PHITS) to estimate the amount of ¹⁰⁵Pd and ¹⁰⁶Pd generated by the experiment.⁴) Assuming that all ¹⁰⁵Ag and ^{106m}Ag detected by the γ -ray measurements will be converted into ¹⁰⁵Pd and ¹⁰⁶Pd, respectively, they amount to 92% for ¹⁰⁵Pd and 25% for ¹⁰⁶Pd generated from the ¹⁰⁷Pd transmutation. Therefore, the total amount of ¹⁰⁵Pd and ¹⁰⁶Pd was estimated to be 0.9 pg for ¹⁰⁵Pd and 40 pg for ¹⁰⁶Pd. Considering that the amount of implanted ¹⁰⁷Pd was estimated to be 270 ng, the isotopic ratios were calculated to be 3.29×10^{-6} for ¹⁰⁵Pd/¹⁰⁷Pd and 1.49×10^{-4} for ¹⁰⁶Pd/¹⁰⁷Pd.

The isotopic ratio normalized by the number of 107 Pd nuclei (Pd/ 107 Pd) was also evaluated by a simulation using PHITS. Considering the production yield of each nuclide, the change in the isotopic ratios were estimated to be 2.90 ×10⁻⁶ for 105 Pd/ 107 Pd and 8.43 × 10⁻⁵ for 106 Pd/ 107 Pd for deuteron irradiation performed with a beam current of 1 particle μ A for 12.6 d. This estimation is consistent with the experimental results, thereby preliminarily verifying the 107 Pd transmutation (Fig. 2).

This work was funded by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

References

- Y. Miyake *et al.*, RIKEN Accel. Prog. Rep. **51**, 102 (2018).
- A. Tatami *et al.*, AIP Conference Proceedings, 1962, 030005 (2018).
- R. L. Heath, Gamma-ray spectrum catalogue: Ge(Li) and Si(Li) spectrometry, Fourth edition, Aerojet Nuclear Co., Idaho Falls, Idaho (1974).
- 4) T. Saito et al., J. Nucl. Sci. Technol. 55, 684-690 (2018).

[†] Condensed from the article in Y. Miyake *et al.*, OECD/NEA (2018) Proceedings of the Fifteens Information Exchange Meetings on Actinide and Fission Product Partitioning and Transmutaiton, Manchester, UK, 1-3 October 2018.