Spectroscopy of pionic atoms in 122Sn(d, 3He) reaction and angular dependence of the formation cross sections†

(piaf Collaboration)

Spectroscopy of deeply bound pionic atoms has been contributing to understanding of non-perturbative low-energy region of the QCD.† We have started an experimental spectroscopy of pionic atoms at RIBF and conducted our first experiment in 2010 by measuring 122Sn(d, 3He) reactions near the π^- emission threshold for about 15h. We employed deuteron beam with the energy of 498.9 ± 0.2 MeV and a typical intensity of 2×10^{11}/s accelerated by SRC. Such a high intensity deuteron beam may serve as an irreplaceable basis for high statistical and systematic precision in the spectroscopy and let us achieve opportunities to reach understanding of the the low-energy QCD with unprecedented accuracy.

During the experiment, the deuteron beam impinged on a thin 122Sn target located at a nominal target position of BigRIPS. We used BigRIPS as a spectrometer to momentum-analyze the emitted 3He and measured the Q-value of the reaction in the missing-mass measurement. We reconstructed the tracks of the 3He by a set of tracking detectors placed near the F5 dispersive focal plane. We installed a set of scintillation counters near the F5 focal plane and identified the particles. After applying detailed optical aberration corrections, we achieved excitation spectra of the target Sn nucleus with the best resolution of 0.42 MeV (FWHM). The absolute excitation energy is calibrated by using a polyethylene target to observe two-body reactions of $H(d$, 3He)π^0.

In the measured excitation spectrum of the target Sn nucleus, we observe three prominent peak structures near the π^- emission threshold as depicted in Fig. 1 of our original paper Ref. 2). The left most peak in the smaller-mass side is assigned to the 1pionic state mainly coupling with a neutron hole state of $(3s_{1/2})^1_n$. The central peak is assigned mainly to formation of the 2pionic state. The right most peak in the larger-mass side is contributed from higher pionic orbitals. The pionic states in 124Sn are observed for the first time. We made an elaborate fitting of the observed spectrum and deduced the 1s and 2p binding energies and the 1s width. The deduced binding energies and the width agree with theoretical calculations.

In the measurement, a large angular acceptance of BigRIPS provided a very unique opportunity. As shown in Fig. 2 of Ref. 2), we observe reaction-angle dependence of the pionic atom formation spectra for the first time. The dependence of both 1s and 2p states are determined experimentally. Comparing the measured dependence with a theoretical prediction, they are qualitatively agreeing well, and the observed dependence directly confirms the assignment of the angular momenta of the structures in the spectrum.

Quantitatively comparing the measured absolute formation cross sections with the theoretical predictions, we find that the measured 2p cross section fairly well agrees with the theory and that the 1s cross section is smaller by a factor of about 20%. Since a ratio of the measured cross sections of the 1s to 2p state is attributed with relatively small errors, the deviation from the theory invokes important questions in understanding of the pionic atom formation reactions.

In conclusion, we conducted first pionic atom spectroscopy at RIBF and measured pionic 121Sn as peak structures in the missing-mass spectrum for the first time. Reaction angle dependence of the pionic 1s and 2p formation cross sections are observed and compared with theoretical calculations. The measured dependence qualitatively agree with the theory confirming the correct assignment of the observed structures in the spectrum. Measured absolute 2p cross section well agrees with the theory but the theory overestimates the 1s cross section by a factor of about 5. The measurement firmly proves potential of the RIBF for future high precision spectroscopy of pionic atoms.

References
3) N. Ikeno et al., PTEP 2015, 033D01 (2015).

*1 Condensed from the article in Phys. Rev. Lett. 125, 152505 (2018)
*2 RIKEN Nishina Center
*3 University of Notre Dame
*4 Kyoto University
*5 GSI Helmholtzzentrum für Schwerionenforschung GmbH
*6 Nara Women’s University
*7 Tottori University
*8 CNS, University of Tokyo
*9 Stefan Meyer Institute for Subatomic Physics

- 91 -