Isotope identification in nuclear emulsion plate for double-hypernulcear study^{\dagger}

S. Kinbara,^{*1} H. Ekawa,^{*2} T. Fujita,^{*3} S. Hayakawa,^{*4} S. H. Hwang,^{*5} Y. Ichikawa,^{*3} K. Imamura,^{*3} R. Murai,^{*1} M. K. Soe,^{*1} M. Sweet,^{*1} A. Takamine,^{*3} A. M. M. Theint,^{*1} H. Ueno,^{*3} J. Yoshida,^{*6} M. Yoshimoto,^{*1} and K. Nakazawa^{*1}

Double hypernulcei such as double- Λ and Ξ hypernulcei provide information about Λ - Λ and Ξ -N interactions, which are important to understand the inner structure of a neutron star. We have only two reliable information from the NAGARA^{1,2)} and KISO^{3,4)} events in the E373 experiment. Other events are not uniquely identified for the production and decay processes owing to the remaining possible interpretations. The charge identification method is a key technique to understand the multi-strangeness system.

To develop the method, we exposed eight nuclides (¹H, ²H, ³H, ³He, ⁴He, ⁷Li, ⁹Be, and ¹¹B) to a nuclear emulsion at RIPS. To study the halo effect in the finite focal depth of objective lens, the exposed angle θ perpendicular to the emulsion surface was set to be $\theta \approx 25^{\circ}$, 50° , and 75° .

To recognize the charge of the particle, we measured the track width and estimated the track volume that reflect the energy-losses. Raw images were taken by microscope with a $100 \times$ objective lens and an 8 bits CCD camera. A focused image, as shown in Fig. 1(a), consists of the most focused layers of raw images. Figure 1(b) is illustrated according to the following equation, $B_{\text{out}} = 255 \times (B_{\text{in}} - B_{\text{min}})/(B_{\text{max}} - B_{\text{min}})$, where $B_{\rm in}$, $B_{\rm max}$, and $B_{\rm min}$ are the brightness of each pixel, maximum, and minimum brightness in Fig. 1(a), respectively. $B_{\rm in}$ was enhanced to $B_{\rm out}$. Figure 1(c) was illustrated by applying an algorithm called "difference of Gaussian" to Fig. 1(b). Then, a uniform background image was obtained by subtracting Fig. 1(b) from 1(c), as shown in Fig. 1(d). We measured the brightness perpendicular to the track in the Fig. 1(d) and de-

Fig. 1. Image processing method to obtain track width.

- *² Department of Physics, Kyoto University
- *³ RIKEN Nishina Center
- ^{*4} Department of Physics, Osaka University
- ^{*5} Korea Research Institute of Standards and Science
- *⁶ Japan Atomic Energy Agency

Fig. 2. V_r^{α} of each nucleus to α particle as a function of $\log(1/\sin\theta)$.

fined the track width as a distance between two inflection points, which were obtained by applying a fitting function, $f = a \times \tanh(\text{gauss}(x, \mu, \sigma))$, to the data in Fig. 1(e).

The track width depends on the photographic development. As a calibration source, we used α particles which have monochromatic kinetic energy emitted from natural isotope ²¹²Po in the emulsion. We obtained the calibration function of $v^{\alpha}(d)$ with 68 α -particles, where v^{α} is the average track volume of an α -particle at depth d from the emulsion surface.

The widths were measured for every 1 μ m cell along the track. Because the depths of the measured cells changed along the track, a volume ratio V_r^{α} to normalize the α -particle for each nucleus was obtained for measured volume V_i in *i*th cell as $V_r^{\alpha} = \sum_{i=1}^{90} V_i / \sum_{i=1}^{90} v^{\alpha}(d_i)$, where d_i is the depth of the *i*th cell. We put 200 tracks together at four areas for each nucleus in the exposed emulsion and fitted them according to $\log(1/\sin\theta)$, where we set $\log(1/\sin\theta)$ to be ξ , as angle dependence of the volume ratio, $V_r^{\alpha}(\xi)$, to the volume of the α particle, as shown in Fig. 2.

To confirm the utility of the above method, it was applied to one track of a Ξ hypernucleus candidate detected in the E373 experiment. The nucleus of this track is known as ³H or ⁶He by kinematical analysis. Their V_r^{α} can be estimated by the data points of ¹H and ⁴He. Thus, we concluded that the nucleus would be a ⁶He nucleus with a likelihood ratio of 0.9.

References

- 1) H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001).
- 2) J. K. Ahn *et al.*, Phys. Rev. C 88, 014003 (2013).
- K. Nakazawa *et al.*, Prog. Theor. Exp. Phys. **2015**, 033D02 (2015).
- E. Hiyama, K. Nakazawa, Annu. Rev. Nucl. Part. Sci. 68, 131 (2018).

[†] Condensed from the article in Prog. Theor. Exp. Phys. 2019, 011H01 (2019).

^{*1} Physics Department, Gifu University