The $\pi\gamma \to \pi\pi$ transition and the ρ radiative decay width from lattice QCD[†]

C. Alexandrou,^{*1,*2} L. Leskovec,^{*3} S. Meinel,^{*3,*4} J. Negele,^{*5} S. Paul,^{*2} M. Petschlies,^{*6} A. Pochinsky,^{*5} G. Rendon,^{*3} and S. Syritsyn^{*7,*4}

Lattice QCD calculations of hadronic matrix elements of external currents are straightforward as long as the initial and final states contain no more than a single, stable hadron. For multi-hadron states, however, the relation between the finite-volume matrix elements computed on the lattice and the physical infinite-volume matrix elements of interest is quite nontrivial, and is known only for certain cases. The formalism for $1 \rightarrow 2$ transition matrix elements was pioneered by Lellouch and Lüscher in 2000,⁴⁾ and was later generalized by other authors to more complicated systems.^{5–10)}

Our collaboration is using this formalism to compute several $1 \rightarrow 2$ transition matrix elements of interest in high-energy and nuclear physics, including semileptonic weak decays such as $B \rightarrow \pi \pi \ell \bar{\nu}$. The present work considers the electromagnetic process $\pi \gamma \rightarrow \pi \pi$, where we take the $\pi \pi$ system in a P wave and isospin 1, and allow the photon to be virtual. The hadronic matrix element for this process can be written as

$$\langle \pi \pi | J^{\mu} | \pi \rangle = \frac{2i\mathcal{V}(q^2, s)}{m_{\pi}} \epsilon^{\nu\mu\alpha\beta} \epsilon_{\nu}(P, m)(p_{\pi})_{\alpha} P_{\beta}, \quad (1)$$

where P and ϵ are the four-momentum and polarization of the two-pion final state, p_{π} is the fourmomentum of the single-pion initial state, and the amplitude $\mathcal{V}(q^2, s)$ depends on the two scalar variables $q^2 = (p_{\pi} - P)^2$ and $s = P^2$. Our calculation was performed with 2 + 1 flavors of clover fermions, at a pion mass of approximately 320 MeV. Our results for $\mathcal{V}(q^2, s)$ are shown in Fig. 1. This amplitude shows the expected enhancement associated with the ρ resonance, which corresponds to a pole at $s_{\text{pole}} \approx m_{\rho}^2 + im_{\rho}\Gamma_{\rho}$. One very interesting result, seen for the first time, is the following: for large s, $\mathcal{V}(q^2, s)$ falls off significantly slower compared to what one would expect for purely resonant behavior.

The residue of $\mathcal{V}(0, s)$ at $s = s_{\text{pole}}$ is equal to the product of the ρ - $\pi\pi$ and ρ - $\pi\gamma$ couplings. Our result for the photocoupling is $|G_{\rho\pi\gamma}| = 0.0802(32)(20)$,

- *1 Department of Physics, University of Cyprus
- *2 Computation-based Science and Technology Research Center, Cyprus Institute
- *³ Department of Physics, University of Arizona
- *4 RIKEN Nishina Center
- *5 Center for Theoretical Physics, Massachusetts Institute of Technology
- $^{*6}~$ Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn
- *7 Department of Physics and Astronomy, Stony Brook University

Fig. 1. Our results for the $\pi\gamma \to \pi\pi$ transition amplitude as a function of the $\pi\pi$ invariant mass and the photon virtuality. The magenta boxes show the 1σ uncertainties in $a\sqrt{s}$, a^2q^2 , and \mathcal{V}/a .

where the first uncertainty originates from the twopoint and three-point function fits, while the second uncertainty is an estimate of the parametrization dependence in the analytic continuation. Despite the heavier-than-physical light-quark masses, the lattice result for $|G_{\rho\pi\gamma}|$ is already close to the value extracted from the measured ρ radiative decay width.¹¹

References

- 1) M. Lüscher, Nucl. Phys. B 354, 531 (1991).
- R. A. Briceño, J. J. Dudek, R. D. Young, Rev. Mod. Phys. 90, 025001 (2018).
- 3) C. Alexandrou et al., Phys. Rev. D 96, 034525 (2017).
- L. Lellouch, M. Lüscher, Commun. Math. Phys. 219, 31 (2001).
- C. J. D. Lin, G. Martinelli, C. T. Sachrajda, M. Testa, Nucl. Phys. B 619, 467 (2001).
- N. H. Christ, C. Kim, T. Yamazaki, Phys. Rev. D 72, 114506 (2005).
- M. T. Hansen, S. R. Sharpe, Phys. Rev. D 86, 016007 (2012).
- R. A. Briceño, Z. Davoudi, Phys. Rev. D 88, 094507 (2013).
- R. A. Briceño, M. T. Hansen, A. Walker-Loud, Phys. Rev. D 91, 034501 (2015).
- 10) R. A. Briceño, M. T. Hansen, Phys. Rev. D 92, 7, 074509 (2015).
- C. Patrignani *et al.* (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

[†] Condensed from the article in Phys. Rev. D **98**, 074502 (2018)