On-line mass measurement using multi-reflection time-of-flight mass spectrograph (MRTOF-MS) at KISS

J. Y. Moon,^{*1} T. Hashimoto,^{*1} S. C. Jeong,^{*2} M. Wada,^{*2} P. Schury,^{*2} Y. X. Watanabe,^{*2} Y. Hirayama,^{*2} Y. Ito,^{*5} M. Rosenbusch,^{*3} T. Niwase,^{*4} H. Wollnik,^{*6} and H. Miyatake^{*2}

We report the first online measurement using a newly developed multi-reflection time-of-flight mass spectrograph (MRTOF-MS), which recently achieved a mass resolving power of, $\sim 120,000$ in an offline test. The detailed structure of the MRTOF-MS can be found in a previous report.¹⁾ As a calibrant for the $A \sim 200$ mass region, ⁸⁵Rb ions were chosen because the ¹⁹⁸Pt ions extracted from the gas cell cooler buncher (GCCB), were found more likely doubly charged.²⁾ The Rb ions existing in the ¹³³Cs ion source were filtered out by using the rear linear Paul trap mass filter and transported with significant intensity. During the online experiment using a 198 Pt target of 12.5 mg/cm² and 136 Xe beam of 10.75 MeV/nucleon, different target-like isotopes were produced in a multi-nucleon transfer reaction at KISS,³⁾ and among them, $^{194}\mathrm{Os}$ ions were used to study the hyperfine structure.⁴⁾ At KISS, by adjusting the laser frequency, specific ions are selectively ionized by irradiating the ionization lasers in two steps and transported

Fig. 1. Measured TOF spectra : $^{193}\mathrm{Os}$ run (Upper) and $^{194}\mathrm{Os}$ run (Lower). See the text for details.

- *¹ Institute for Basic Science, Rare Isotope Science Project
- *2 Wako Nuclear Science Center (WNSC), Institute of Parti- cle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)
 *3 BUKEN Nicking Contents
- *³ RIKEN Nishina Center
- ^{*4} Department of physics, Kyushu University
- *⁵ Japan Atomic Energy Agency
- *6 Department of Chem.&Bio.chem. New Mexico state university

Fig. 2. Mass deviation from the AME2016 mass value. The solid line denotes the uncertainties from the AME2016.

with almost 100% purity. However, in most of the measurements, huge contaminants were observed, which seemed irrelevant to the ionization laser. As an example, Fig. 1 demonstrates the contaminants observed in the 193,194 Os runs, in which (a) and (c) are 193 Pt and ¹⁹⁴Pt ions, respectively, that survived from the elastic events emitted from the production target. The other contaminant near 194 Pt (d) is more likely a mixture of A = 194 isotopes (Ir, Au, and Hg). The contaminant (b), 6.5 micro-amu heavier than ¹⁹³Os, is not identified yet but sufficiently removed by the ion collection electrode (ICE). Fig. 2 demonstrates the accuracy and precision of each measurement of ¹⁹⁴Os ($T_{1/2} = 6$ y), ¹⁹⁶Os ($T_{1/2} = 30$ m), ¹⁹⁸Ir ($T_{1/2} = 8$ s), and ¹⁹⁹Ir ($T_{1/2} = 6$ s). Three different methods implemented to derive their masses, i.e., the single referencing method $^{5)}$ using $^{85}\mathrm{Rb}$ ions or Pt ions and the double referencing method,⁶⁾ were compared there. It should be noted that the large discrepancy of ¹⁹⁴Os is more likely due to the contaminant included in the ¹⁹⁴Os position, as previously described. The mass of ¹⁹⁸Ir has been directly measured for the first time, but it still needs more careful analysis.

References

- J. Y. Moon *et al.*, RIKEN Accel. Prog. Rep. **52**, 138 (2019).
- 2) P. Schury *et al.*, in this report.
- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B 353, 4 (2015).
- 4) Y. Hirayama et al., in this report.
- P. Schury *et al.*, Nucl. Instrum. Methods Phys. Res. B 335, 39 (2014).
- 6) F. Wienholtz et al., Nature 498, 346 (2013).