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Control of electrical conductivity in diamond by boron implantation
—application of high-temperature and high-pressure annealing
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Diamond is an excellent electrical insulator with a
large band gap of 5.5 eV. Interestingly, it becomes a semi-
conductor when doped with a small amount of boron
(for p-type) or phosphorus (for n-type). Ekimov et
al. reported that B-doped diamond, when doped be-
yond the metal-to-insulator transition at nB ∼ 3 ×
1020 B/cm3, shows superconductivity in samples grown
by high-pressure and high-temperature synthesis.1) The-
oretically, the superconducting critical temperature Tc

can be increased substantially by reducing the effects of
disorder in the B-doping processes.2) For a higher Tc,
more subtle control of doping using CVD and/or MBE
methods is required, whereas a different method based
on ion implantation is also worth investigating, since it
enables selective ion doping in a controlled manner.

We attempted to control the electrical conductivity
in diamond by means of the ion-implantation technique
with the use of RILAC at RIKEN. In our study, for n-
and p-type semiconductors (and possibly superconduc-
tors), nitrogen and boron ions are implanted into dia-
mond, respectively. By changing the beam intensity and
irradiation time, the concentration of nitrogen or boron
was controlled. Note that achieving an n-type semicon-
ductor, and needless to say an n-type superconductor,
by the nitrogen-doping of diamond is challenging, since
nitrogen behaves as a deep donor in diamond and does
not contribute to conductivity.3) The electrical conduc-
tivity observed in the nitrogen-implanted diamonds (e.g.,
at nN ∼ 7.5× 1021 N/cm3) is, therefore, most likely ex-
plained in terms of the carbon atoms connected via the
sp2 bonding produced by radiation damage. The Raman
spectra support this scenario.

In this fiscal year, we mainly investigated boron-

Fig. 1. Phase diagram of carbon. The annealing condition in
this work is indicated by a red circle.
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Fig. 2. Laser Raman spectra (632.8 nm excitation) of the
as-implanted and annealed samples for nB ∼ 6.8 ×
1022 B/cm3. The broken lines indicate the fluores-
cence emission of the zero-phonon line (ZPL) and n-
phonon lines (nPLs; “phonon side band”) due to nega-
tively charged nitrogen-vacancy (NV−) defect centers.

implanted diamonds. Boron ions were implanted into
diamond crystals (each size is 1 × 1 × 0.3 mm3) at
5 keV (implantation depth: ∼10 nm) using an ECR ion
source.4) We prepared ten samples of different concentra-
tions ranging from nB ∼ 4.9× 1020 to 6.8× 1022 B/cm3.
Measurements of the magnetization and electrical resis-
tivity show that the as-implanted diamond samples do
not exhibit superconducting transitions, even though nB

values are nominally beyond the metal-to-insulator tran-
sition at 3 × 1020 B/cm3. In order to reduce the lat-
tice damage produced during the implantation, we at-
tempted annealing treatments after implantation. As
the phase diagram of carbon (Fig. 1) shows, diamond is
not stable at low pressures; we annealed the samples at
800◦C and 4 GPa (in the diamond-stable region) for one
hour. The annealed samples, however, indicate no sign of
superconductivity. Rather, the annealing treatment de-
graded the diamond crystals: the (222) peak at a higher
angle in x-ray diffraction measurement disappeared after
annealing, whereas the (111) peak remained. Figure 2
shows a typical change in the Raman spectra after an-
nealing. The fluorescence emission due to NV− defect
centers is clear, suggesting that the annealing treatment
promotes the NV formation process, where nitrogen ions
have been embedded in the Ib-type diamond as impuri-
ties. Hereafter, we must also consider the effect of the
NV− centers on the electrical conductivity in the im-
planted diamonds.
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