Offline measurement of mass and correlated decay properties using radioactive ²²⁴Ra source via MRTOF+ α -TOF detector

T. Niwase,^{*1,*2,*3} M. Wada,^{*3} P. Schury,^{*3} H. Haba,^{*2} S. Ishizawa,^{*5,*2,*3} Y. Ito,^{*4} D. Kaji,^{*2} S. Kimura,^{*2} H. Miyatake,^{*3} K. Morimoto,^{*2} K. Morita,^{*1,*2} M Rosenbusch,^{*2} H. Wollnik,^{*6} T. Shanley,^{*7} and Y. Benari^{*7}

Recently, we newly developed a detector called the " α -TOF" detector¹⁾ for the measurement of mass and correlated decay properties by using a multi-reflection time-of-flight mass spectrograph (MRTOF-MS).²⁾ We performed realistic performance tests using a ²²⁴Ra source. The source, produced by a chemical separation from a ²²⁸Th source,³⁾ was placed in a cryogenic gas cell.

Ions of ²²⁰Rn and ²¹⁶Po produced by the decay of ²²⁴Ra were thermalized in the gas cell and extracted using an RF carpet, transported to the MRTOF-MS preparation traps, and injected into the MRTOF-MS for the correlated measurement of the time of flight (ToF) and α -decay. ²²⁰Rn and ²¹⁶Po have half-lives of 55.6 s and 145 ms with characteristic α -particle energies of 6.29 MeV and 6.78 MeV, respectively. During this measurement, the MRTOF was operated for only 2 laps inside the MRTOF reflection chamber. This was sufficient to unambiguously determine the A/q value with a mass resolving power of $R_m \approx 1500$ with a wide mass bandwidth.

Fig. 1. (a) Singles ToF spectrum. (b) ToF spectrum in coincidence with $^{220}\text{Rn}~\alpha\text{-decays}$ obtained using a time gate of $T_c=180$ s. (c) ToF spectrum in coincidence with ^{216}Po decays with $T_c=450$ ms.

- ^{*1} Department of Physics, Kyushu University
- *² RIKEN Nishina Center
- *³ Wako Nuclear Science Center (WNSC), KEK
- *4 Japan Atomic Energy Agency
- *5 Yamagata University
- *⁶ New Mexico State University
- *⁷ ETP Ion Detect

Fig. 2. Distribution of decay time of ²¹⁶PoCO⁺⁺. The solid line indicates a distribution curve drawn with values obtained from the literature.

Figure 1 shows the ToF spectrum of ²²⁰Rn and ²¹⁶Po. ToF and α -decay signals were recorded event by event with absolute time stamps. Figure 1(a) shows the singles ToF spectrum. By using a coincidence time gate (T_c) prior to the detection of an α -decay signal, it is possible to discriminate between ToF events corresponding to ²²⁰Rn and ²¹⁶Po, as shown in Fig. 1(b) and (c), respectively. To identify the peak of ²¹⁶Po, a ±150 keV energy gate was used for the α -decay signal at approximately 6.78 MeV with $T_c = 450$ ms corresponding to three half-life periods. To identify the peak of ²²⁰Rn, a similar gate was made on the 6.29 MeV α -decay signal with $T_c = 180$ s.

Using the α -decay correlated ToF event, we determined that the ToF peak occurs at A/q = 118 and 120 from ²²⁰Rn events and A/q = 122 from ²¹⁶Po events. The limited mass resolution of the wide mass bandwidth measurement precluded precise molecular identification. However, based on past experience, we have tentatively assigned the A/q = 118, 120 and 122 peaks to ²²⁰RnO⁺⁺, ²²⁰RnHF⁺⁺ and ²¹⁶PoCO⁺⁺, respectively. In addition, by defining the decay time as the time interval between the α -signal and the ToF event, we demonstrated the ability to measure half-lives with the α -TOF detector. Figure 2 shows a plot of the measured decay time of 216 PoCO⁺⁺ ions along with the expected decay time distribution function based on the value reported in the literature. We evaluated the half-life of 216 Po as $T_{1/2} = 123(22)$ ms, which is in good agreement with the literature value of 145(2) ms.

References

- T. Niwase *et al.*, Nucl. Instrum. Methods Phys. Res. A 953, 163198 (2020).
- P. Schury *et al.*, Nucl. Instrum. Methods Phys. Res. B 335, 39(2014).
- 3) J. Narbutt et al., Appl. Radiat. Isot. 49, 89-91(1998).