⁹⁹Ru and ⁵⁷Fe Mössbauer spectroscopic studies of $Na_2Ru_{1-x}Fe_xO_3$ of sodium-ion battery electrode

K. Hamano,^{*1,*2} Y. Kobayashi,^{*1,*2} H. Haba,^{*2} and H. Ueno^{*2}

Sodium-ion batteries have attracted attention as the next generation of batteries after Li-ion batteries for large-scale applications owing to the abundance and low cost of sodium.^{1–3)} The use of Na-excess metal oxides, Na₂MO₃ (M: transition metals), as cathode materials may realize large capacities through an additional oxygen redox reaction. Among Na-excess metal oxides, Na₂RuO₃ is expected to be the leading cathode material. In this study, we demonstrate the oxidation states and coordination environments of Ru ions in Na₂RuO₃ and $Na_2Ru_{1-x}Fe_xO_3$ (x = 0.01 and 0.05) after repeating the charge/discharge processes by means of ⁹⁹Ru and ⁵⁷Fe Mössbauer spectroscopy, XRD, and electrochemical measurements. Mössbauer spectroscopy is a powerful tool to understand the oxidation states of Ru ions. However, the measurements of ⁹⁹Ru Mössbauer spectra can only be performed at low temperatures because the Mössbauer transition energy is relatively high $(E_{\gamma} = 89.8 \text{ keV}).^{4,5)}$ A ⁵⁷Fe-doped sample of $Na_2Ru_{1-x}Fe_xO_3$ was prepared to estimate the temperature dependence of the oxidation states of Ru sites by ⁵⁷Fe Mössbauer spectroscopy.

 Na_2RuO_3 has a layered structure in which the first layer is composed of Na^+ and the second layer contains Na^+ and Ru^{4+} in the ratios 1:3 and 2:3, respectively. It is known that Na_2RuO_3 has two phases, namely, ordered and disordered arrangements, which correspond to sintering times of 48 h and 12 h, respectively. Ordered Na_2RuO_3 has honeycomb-type cation ordering in the $[Na_{1/3}Ru_{2/3}]O_2$ layers, whereas disordered Na_2RuO_3 has a random distribution of Na^+ and Ru^{4+} in the $[Na_{1/3}Ru_{2/3}]O_2$ layers. The two polymorphs exhibit significant differences in electrochemical properties.³⁾

A sample of disordered Na₂Ru_{0.99}Fe_{0.01}O₃ was prepared through a solid-state reaction. A stoichiometric mixture of RuO₂, NaHCO₃, and Fe₂O₃ was pressed and sintered at 850°C for 12 h in an Ar atmosphere. The Na₂Ru_{0.99}Fe_{0.01}O₃ sample was confirmed to be in a single phase by XRD. For ⁹⁹Ru Mössbauer spectroscopy, the source nuclide ⁹⁹Rh ($T_{1/2} = 15.0$ d) was produced through the ⁹⁹Ru(p, n)⁹⁹Rh reaction at the AVF Cyclotron. ⁹⁹Ru Mössbauer spectra were obtained by a conventional arrangement, but both the source and absorbers were maintained at 4.2 K in a liquid He cryostat during the measurements.

The 57 Fe Mössbauer spectrum of *disordered* Na₂Ru_{0.99}Fe_{0.01}O₃ shows a doublet peak, as shown in Fig. 1. The doublet was analyzed with the distribu-

1.01 Relative transmission (a. u.) 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 -3 -2 -1 0 2 Velocity mm/s

Fig. 1. ⁵⁷Fe Mössbauer spectrum of disordered $Na_2Ru_{0.99}Fe_{0.01}O_3$ measured at 15.0 K.

Fig. 2. ⁹⁹Ru Mössbauer spectrum of disordered Na₂Ru_{0.99}Fe_{0.01}O₃ measured at 5.0 K.

tion of quadrupole splitting (ΔE_Q) because Fe ions were randomly present at on Na and Ru sites. The mean values of the obtained distributions of the isomer shift (δ) and ΔE_Q were 0.48(1) mm/s and 0.64 mm/s, respectively. Fe ions were in a trivalent state in the [Na_{1/3}Ru_{2/3}]O₂ layers. The ⁹⁹Ru Mössbauer spectrum shows a broadened and asymmetric single line, as shown in Fig. 2. The isomer shift was -0.30(1) mm/s, and the Ru ion was in a typical Ru⁴⁺ state. It is speculated that the line broadening is caused by an increase in the oxidation state of a part of the Ru ions from Ru⁴⁺ to Ru⁵⁺ and a significant distortion of the octahedron of RuO₆ with the introduction of a Fe³⁺ ion.

References

- 1) K. M. Mogare et al., Z. Anorg. Allg. Chem. 630, 547 (2004).
- 2) M. Tamaru et al., Electrochem. Commun. 33, 23 (2013).
- 3) B. M. de Boisse et al., Nature Commun. 7, 11397 (2016).
- K. Takahashi *et al.*, RIKEN Accel. Prog. Rep. 48, 242 (2015).
- 5) Y. Kobayashi et al., J. Phys. 217, 012023 (2010).

^{*1} Dep. of Eng. Sci., University of Electro-Commun.

^{*&}lt;sup>2</sup> RIKEN Nishina Center