An attempt to modify the membrane degasser (MDG)

Y. Komori,*1 K. Ooe,*2 T. Yokokita,*1 Y. Shigekawa,*1 and H. Haba*1

We have been developing a rapid solvent extraction apparatus coupled to the GARIS gas-jet system for aqueous chemistry studies of element 106, Sg, and element 107, Bh.^{1,2)} This apparatus consists of a continuous dissolution apparatus called a membrane degasser (MDG), a flow solvent extractor (FSE), and liquid scintillation detectors. In the MDG, nuclear reaction products transported by the gas-jet method are continuously mixed and dissolved with an aqueous solution. The gas is removed through a hydrophobic membrane, and the solution is injected to the FSE. In our previous studies, we fabricated the MDG and studied the dissolution efficiencies of $^{90\text{m}}$ Nb $(T_{1/2} = 18.8 \text{ s}), ^{90\text{g}}$ Nb (14.6 h), and 178a Ta (2.36 h) produced in the nat Zr $(d, x)^{90m, g}$ Nb and $^{\rm nat}$ Hf $(d,x)^{178a}$ Ta reactions. 1) We found that the dissolution efficiency of the short-lived 90mNb isotope is as low as approximately 50%, though those for the longlived ^{90g}Nb and ^{178a}Ta isotopes are greater than 80%. We considered that the reason for the difference in dissolution efficiencies between the short-lived and longlived isotopes is as follows: (i) the gas-jet-transported products are not mixed well with the aqueous solution and (ii) the long-lived isotopes accumulate in the MDG. In this work, we fabricated a miniaturized MDG to reduce the accumulation of the reaction products in the MDG. A major modification is the reduction of the inner volume of the MDG from 23 μ L to 1.8 μ L. We measured the dissolution efficiencies of 90mNb, 90gNb, and ^{178a}Ta using the miniaturized MDG and compared the results with those obtained with the conventional MDG. We also studied the dissolution efficiencies of ¹⁴⁴Eu $(T_{1/2} = 10.2 \text{ s})$, ^{143}Sm (68 s), and ^{143}Eu (2.59 min) using the conventional MDG. The ¹⁴⁴Eu with a half-life of 10 s is favorable because its dissolution efficiency is less influenced by the accumulation in the MDG than that of the long-lived isotopes.

 $^{90\mathrm{m,g}}\mathrm{Nb}$ and $^{178\mathrm{a}}\mathrm{Ta}$ were produced in the same reactions as mentioned above. Two nat Zr foils with a thickness of 2.4 μ m and four ^{nat}Hf foils with a thickness of $4.4~\mu\mathrm{m}$ were irradiated with a 24 MeV deuteron beam supplied by the RIKEN AVF cyclotron. The beam currents were 4.6 and 1.5 μ A. The reaction products were transported by the He/KCl gas-jet system to the miniaturized or conventional MDG in the chemistry laboratory. The flow rate of the He carrier gas was 1.5 L/min. Before entering the MDG, nuclear reaction products were continuously mixed with 1 M HCl at a flow rate of 1 mL/min inside a PTFE capillary of 0.75 mm inner diameter (i.d.) and 5 cm length. Effluents from the MDG were collected for 30 or 60 s with polypropylene tubes and were subjected to γ -ray spectrometry with a Ge detector. The dissolution efficiencies were determined by

Table 1. Summary of the dissolution efficiencies obtained with the miniaturized and conventional MDGs.

Nuclide	Dissolution efficiency [%]	
(Half-life)	Miniaturized	Conventional
	MDG	MDG
^{90m} Nb (18.81 s)	35 ± 2	36 ± 5
^{178a} Ta (2.36 h)	53 ± 3	71 ± 7
^{90g} Nb (14.6 h)	60 ± 20	81 ± 10
¹⁴⁴ Eu (10.2 s)	_	43 ± 5
¹⁴³ Sm (68 s)	_	74 ± 8
¹⁴³ Eu (2.59 min)	_	78 ± 12

comparing the radioactivity in the effluents with that directly collected on a glass fiber filter. We also produced $^{144}\mathrm{Eu},~^{143}\mathrm{Sm},$ and $^{143}\mathrm{Eu}$ through the $^{\mathrm{nat}}\mathrm{Sm}(d,x)$ reaction. Six $^{144}\mathrm{SmF}_3$ targets deposited on Ti foils, each with a thickness of 495 $\mu\mathrm{g/cm^2}$ were irradiated with a 24 MeV deuteron beam of 3.9 $\mu\mathrm{A}.$ The dissolution efficiencies of these nuclides were determined with the conventional MDG using almost the same procedures as for $^{90\mathrm{m},\,\mathrm{g}}\mathrm{Nb}$ and $^{78\mathrm{a}}\mathrm{Ta}.$

The dissolution efficiencies of $^{90\mathrm{m,\,g}}\mathrm{Nb}$ and $^{178\mathrm{a}}\mathrm{Ta}$ obtained with the miniaturized and conventional MDGs are summarized in Table 1. Those of ¹⁴⁴Eu, ¹⁴³Sm, and $^{143}\mathrm{Eu}$ with the conventional MDG are also listed in Table 1. The dissolution efficiency of the short-lived ^{90m}Nb obtained with the miniaturized MDG is the same as that obtained with the conventional MDG. The efficiencies of the long-lived 178a Ta and 90g Nb with the miniaturized MDG are almost 20% lower than those with the conventional MDG. This might be the result of a decrease in the accumulation of the long-lived isotopes due to the smaller inner volume in the miniaturized MDG. The lower dissolution efficiency of the short-lived nuclides such as 90mNb and 144Eu might be due to the insufficient mixing of the gas-jet-transported products with the aqueous solution. At this moment, we expect that a dissolution efficiency of \sim 40% is attainable for $^{265}\mathrm{Sg}^{a,\,b}$ ($T_{1/2}=8.5~\mathrm{s},~14.4~\mathrm{s})^3$) and $^{266}\mathrm{Bh}$ ($T_{1/2}=10.7~\mathrm{s})$ using this MDG.⁴⁾ To increase the dissolution efficiency of these short-lived nuclides, more rapid and efficient mixing of the gas with the aqueous solution is necessary. We will improve the mixing unit of the MDG in the future.

References

- 1) Y. Komori et al., RIKEN Accel. Prog. Rep. 49, 29 (2016).
- Y. Komori et al., RIKEN Accel. Prog. Rep. 50, 247 (2017).
- 3) H. Haba et al., Phys. Rev. C 85, 024611 (2012).
- 4) H. Haba et al., EPJ Web Conf. 131, 07006 (2016).

^{*1} RIKEN Nishina Center

^{*2} Osaka University Graduate School of Medicine