Excitation function measurement of the $Tl(d, \alpha)^{203}$ Hg reaction for carrier-free ²⁰³Hg tracer production

Y. Takahashi,^{*1} S. Goto,^{*1} D. Mori,^{*2} T. Yokokita,^{*2} Y. Komori,^{*2} Y. Wang,^{*2} and H. Haba^{*2}

The influence of relativistic effects on orbital electrons is notable in the superheavy elements with the atomic number $Z \ge 104$. It is predicted that the influence is maximum in the group-12 element $_{112}$ Cn according to a theoretical calculation.¹⁾ In order to confirm this prediction, we are planning chemical experiments on Hg as basic research for a chemical investigation of Cn. 203 Hg $(T_{1/2} = 46.594 d)$ is a suitable radionuclide to conduct off-line experiments because it has a relatively long half-life and emits measurable γ -rays. A carrier-free ²⁰³Hg tracer can be produced with the ^{nat}Tl + d reaction, but only the excitation functions of Pb and Tl isotopes obtained with that reaction were measured in previous studies.²⁻⁴) In this study, we measured the excitation function of the 205 Tl $(d, \alpha)^{203}$ Hg reaction.

The production cross sections of ²⁰³Hg were measured by means of a stacked foil technique. $^{nat}Tl_2O_3$ pellets (96.5 $\mathrm{mg}\,\mathrm{cm}^{-2}$ thick) were covered with 0.01-These pellets and ^{nat}Ti foils mm-thick Al foil. (0.02 mm thick) were alternately stacked as a target. The ^{nat}Ti foils were used for monitoring the beam current and as an energy degrader. The target, fixed in a target holder, was irradiated with a 24-MeV deuteron beam supplied from the RIKEN AVF cyclotron for 2.5 h in He gas. The beam current was measured with a Faraday cup connected to the target holder, and the average current was about 90 nA. The deuteron energies in the individual pellets and foils were calculated with LISE++ ver. $11.2^{(5)}$ After irradiation, the produced nuclides were identified and quantified by γ -ray spectrometry using Ge detectors.

Table 1 lists the identified nuclides and their nuclear data.

When each of 203 Pb and 203 Hg disintegrates, γ -rays of 279 keV are emitted. The radioactivity of each nu-

Table 1. Measured nuclides and their nuclear data. $^{6-9)}$

Nuclide	Half-l	ife	$E_{\gamma}/{ m keV}$	$I_\gamma/\%$
^{204m} Pb	66.93	\min	899.15	99.144
203 Pb	51.92	h	279.1952	80.9
^{202m}Pb	3.54	h	422.12	84.108
$^{201\mathrm{g}}\mathrm{Pb}$	9.33	h	311.15	76.90
202 Tl	12.31	d	439.51	91.5
201 Tl	3.0421	d	167.43	10.00
203 Hg	46.594	d	279.1952	81.56

^{*1} Graduate school of science and technology, Niigata University

*2 RIKEN Nishina Center

 10^{4} ²⁰³Pb 10³ Count rate / cps 10^{2} ²⁰³Hg 10^{1} 10^{0} 20 30 40 0 10 50 60 Elapsed time / d

Fig. 1. Count rates of the 279 keV peak for one of the pellets. The solid curve indicates a fit of the experimental values based on Eq. (1). The dashed lines indicate the components of 203 Pb and 203 Hg.

clides can be determined by analyzing the change of the count rate of the 279 keV peak against elapsed time because their half-lives are quite different. The obtained count rates of the 279 keV peak are shown in Fig. 1.

The data in Fig. 1 can be fitted with the following equation:

$$C_{\text{tot}} = C_{0,\text{Pb}} \exp\left(-\lambda_{\text{Pb}} t\right) + C_{0,\text{Hg}} \exp\left(-\lambda_{\text{Hg}} t\right).$$
(1)

where $C_{0,X}$ and λ_X are the initial count rates and decay constant of a nuclide X of interest, respectively, and t is the elapsed time from the end of bombardment. The result of this analysis indicated that ²⁰³Hg was certainly produced. The analysis is performed for all Tl pellets, and the determination of production cross sections of ²⁰³Hg is in progress.

References

- 1) A. Türler et al., Chem. Rev. 113, 1237 (2013).
- R. Adam Rebeles *et al.*, Nucl. Instrum. Methods Phys. Res. B 288, 94 (2012).
- 3) R. Adam Rebeleset al., J. Korean Phys. Soc. 59, 1975 (2011).
- 4) J. W. Blue *et al.*, J. Med. Phys. 5, 532 (1978).
- O. B. Tarasov *et al.*, Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008).
- 6) C. J. Chiara et al., Nuclear Data Sheets 111, 141 (2010).
- 7) F. G. Kondev, Nuclear Data Sheets 105, 1 (2005).
- 8) S. Zhu et al., Nuclear Data Sheets 109, 699 (2008).
- 9) F. G. Kondev, Nuclear Data Sheets 108, 365 (2007).