## Activation cross sections of alpha-induced reactions on natural ytterbium up to $50 \text{ MeV}^{\dagger}$

M. Saito,<sup>\*1,\*2</sup> M. Aikawa,<sup>\*1,\*2,\*3</sup> T. Murata,<sup>\*1,\*2</sup> N. Ukon,<sup>\*4,\*2</sup> Y. Komori,<sup>\*2</sup> H. Haba,<sup>\*2</sup> and S. Takács<sup>\*5</sup>

Many radioisotopes can be used for medical diagnosis and therapy. One candidate radioisotope is <sup>177g</sup>Lu  $(T_{1/2} = 6.647 \text{ d})$ .<sup>1)</sup> This radioisotope decays with emissions of a  $\beta$ -particle and  $\gamma$ -rays, which are useful for therapy and diagnosis. For practical use of <sup>177g</sup>Lu, the best production reaction should be selected. Among the possible production reactions, we focused on the <sup>nat</sup>Yb( $\alpha, x$ )<sup>177g</sup>Lu reaction in this study. Only one experimental study on this reaction was found in a literature survey.<sup>2)</sup> The study reported the production cross sections of <sup>177g</sup>Lu up to 37.7 MeV. We investigated the cross sections of the reaction up to 50 MeV.

The experiment was performed at the RIKEN AVF cyclotron. The stacked foil activation method and high resolution  $\gamma$ -ray spectrometry were used. The stacked target consisted of pure metallic foils of <sup>nat</sup>Yb (99% purity, Goodfellow Co., Ltd., UK) and <sup>nat</sup>Ti (99.6% purity, Nilaco Corp., Japan). The sizes and weights of the Yb (3 pieces of  $25 \times 25 \text{ mm}^2$ ) and Ti (1 piece of  $50 \times 100 \text{ mm}^2$ ) foils were measured for determination of the target thicknesses. The average thicknesses of the foils were found to be 16.60, 16.32, and 17.11  $\mathrm{mg/cm^2}$ for the Yb foils and  $2.40 \text{ mg/cm}^2$  for the Ti foil. The foils were cut into small pieces of  $8 \times 8 \text{ mm}^2$  to fit a target holder that also served as a Faraday cup. The target was irradiated with a 51.0-MeV  $\alpha$  beam for 2 hours. The incident beam energy was measured by the timeof-flight method.<sup>3)</sup> Energy degradation in the target was calculated by the SRIM code.<sup>4)</sup> The average beam intensity measured by the Faraday cup was 414 nA. The  $\gamma$ -ray spectra of each irradiated foil were measured by a high-resolution HPGe detector without chemical separation. Reaction and decay data were taken from NuDat 2.7 for the data analysis.<sup>5)</sup>

The excitation function of the <sup>nat</sup>Ti( $\alpha, x$ )<sup>51</sup>Cr monitor reaction was derived from measurements of the 320.08-keV  $\gamma$  rays emitted after decay of <sup>51</sup>Cr ( $T_{1/2} =$ 27.7025 d). The derived cross sections were compared with the IAEA recommended values.<sup>6)</sup> According to the comparison, the adopted beam intensity was 379 nA, a decrease of 8.4% from the measured value.

Production cross sections of  ${}^{177\text{g}}\text{Lu}$  ( $T_{1/2} = 6.647$  d) were derived from measurements of the  $\gamma$  line at 208.37 keV ( $I_{\gamma} = 10.36\%$ ) after a cooling time of 3.1

- \*<sup>3</sup> Faculty of Science, Hokkaido University
- \*4 Advanced Clinical Research Center, Fukushima Medical University
  \*5 Institute for Nuclear Research
- <sup>\*5</sup> Institute for Nuclear Research



Fig. 1. Excitation function of the <sup>nat</sup>Yb $(\alpha, x)^{177g}$ Lu reaction in comparison with previous experimental data<sup>2)</sup> and the TENDL-2017 data prediction.<sup>7)</sup>

days. Its parent radionuclide <sup>177</sup>Yb ( $T_{1/2} = 1.911$  h) decayed during the cooling time. The contribution of <sup>177m</sup>Lu ( $T_{1/2} = 160.44$  d) was estimated using the measurement series after a cooling time of 143 days and was found to be negligibly small. The cumulative cross sections of the <sup>nat</sup>Yb( $\alpha, x$ )<sup>177g</sup>Lu reaction were derived and compared with the previous study<sup>2</sup>) and the TENDL-2017 data,<sup>7</sup>) as shown in Fig. 1. The experimental data are in good agreement with each other, but the TENDL-2017 data are much lower than the previous and our experimental ones.

In addition to  $^{177g}Lu$ , production cross sections of co-produced radionuclides  $^{170, 171, 172, 173, 175}Hf$ ,  $^{171g, 172g, 173}Lu$ , and  $^{169g}Yb$  were determined. The results are useful to evaluate radionuclidic impurities of  $^{177g}Lu$  for its practical application.

This work was supported by Hokkaido University Nitobe School Advanced Program Research Grant and JSPS KAKENHI Grant Number 17K07004.

References

- 1) K. Rahbar et al., J. Nucl. Med. 58, 85 (2017).
- B. Király *et al.*, Nucl. Instrum. Methods Phys. Res. B 266, 3919 (2008).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC2014), (2014) p. 3566.
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 5) National Nuclear Data Center, The NuDat 2.7 database, http://www.nndc.bnl.gov/nudat2/.
- 6) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 7) A. J. Koning *et al.*, Nucl. Data Sheets **155**, 1 (2019).

<sup>&</sup>lt;sup>†</sup> Condensed from the article in Nucl. Instrum. Methods Phys. Res. B **453**, 15 (2019)

<sup>\*1</sup> Graduate School of Biomedical Science and Engineering, Hokkaido University

<sup>\*&</sup>lt;sup>2</sup> RIKEN Nishina Center