Excitation function measurement for zirconium-89 and niobium-90 production using alpha-induced reactions on yttrium-89[†]

T. Murata, *1,*2 M. Aikawa, *1,*2,*3 M. Saito, *1,*2 H. Haba, *2 Y. Komori, *2 N. Ukon, *4,*2 S. Takács, *5 and F. Ditrói*5

Zirconium-89 ($T_{1/2} = 78.41$ h) and niobium-90 ($T_{1/2} = 14.6$ h) are expected to be used for immuno-PET.^{1,2)} From the viewpoint of radionuclide production, the investigation of effective production reactions is valuable. We focused on the α -induced reactions on the monoisotopic element ⁸⁹Y to produce the two radionuclides. Five experimental studies on these reactions³⁻⁵⁾ were found in a literature survey. However, significant discrepancies exist among the experimental data. Therefore, we were motivated to investigate α -induced reactions on ⁸⁹Y. The cross sections of co-produced radionuclides other than ⁸⁹Zr and ⁹⁰Nb were also determined.

The experiment was performed at the RIKEN AVF cyclotron. The stacked foil activation technique and highresolution γ -ray spectrometry, which are well-established methods, were adopted for the experiment. The target was composed of pure metallic foils of 89 Y (99% purity, Goodfellow Co., Ltd., UK), ^{nat}Ti (99.6% purity, Nilaco Corp., Japan), and 27 Al (> 99% purity, Nilaco Corp., Japan). The sizes and weights of the foils were measured to determine their average thicknesses, which were found to be 24.2, 5.1, and 5.5 μ m for Y, Ti, and Al, respectively. The three foils were cut into a small size of $1 \text{ cm} \times 1 \text{ cm}$ to fit a target holder, which also served as a Faraday cup. The stacked target was irradiated with a 50.9 ± 0.1 -MeV M-beam for 1 h. The incident energy of the beam was measured using the time-of-flight method.⁶) The energy degradation in the target was calculated using stopping powers obtained from the Stopping and Range of Ions in Matter (SRIM) code.⁷) The average beam intensity was measured as 411 nA using the Faraday cup. The irradiated stacks were dismantled for the off-line γ -ray spectrometry using HPGe detectors. The dead time was kept under 10% by adjusting the distances between the measured foil and HPGe detector. Reaction and decay data for the γ -ray spectrometry were taken from NuDat $2.7.^{8}$

The beam parameters were verified using the ${}^{27}\text{Al}(\alpha, x){}^{22}\text{Na}$ and ${}^{\text{nat}}\text{Ti}(\alpha, x){}^{51}\text{Cr}$ monitor reactions in comparison with the IAEA recommended values.⁹) Based on the comparison, the beam intensity was decreased by 4% from the measured value. The corrected intensity of 398 nA was adopted to derive cross sections.

The excitation function of the $^{89}Y(\alpha, x)^{89g}Zr$ reaction

- [†] Condensed from the article in Nucl. Instrum. Methods Phys. Res. B **458**, 21 (2019)
- *1 Graduate School of Biomedical Science and Engineering, Hokkaido University
- *² RIKEN Nishina Center
- ^{*3} Faculty of Science, Hokkaido University
- *4 Advanced Clinical Research Center, Fukushima Medical University
- $^{\ast 5}\,$ Institute for Nuclear Research, Hungarian Academy of Sciences

Fig. 1. Comparison of cumulative cross sections of the $^{89}{\rm Y}(\alpha,x)^{89}{\rm gZr}$ reaction with previously reported data³⁻⁵⁾ and TENDL-2017 data.¹⁰⁾

was determined. The measurement of the 909.15-keV γ rays ($T_{1/2} = 78.41$ h, $I_{\gamma} = 99.04\%$) was performed after a cooling time of 10 days, which was long enough for complete decay of the parent nuclei ^{89g, m}Nb and ^{89m}Zr. The cumulative cross sections of ^{89g}Zr were obtained and compared with three previous studies^{3–5)} and TENDL-2017 data¹⁰⁾ in Fig. 1. One of the three experimental data sets³⁾ agree with our result. However, the others^{4,5)} deviate from ours.

In addition to ^{89g}Zr, the production cross sections of ⁹⁰Nb and other co-produced radionuclides were determined and compared with previous studies and the TENDL-2017 data. Our results are reasonably consistent with some of the previous studies.

This work was supported by JSPS KAKENHI Grant Number 17K07004.

References

- 1) M. A. Deri *et al.*, Nucl. Med. Biol. **40**, 3 (2013).
- 2) V. Radchenko et al., Radiochim. Acta 102, 433 (2014).
- 3) V. N. Levkovski, Cross Sections of Medium Mass Nuclide Activation (A = 40-100) by medium energy protons and alpha particles (E = 10-50 MeV) (Inter-Vesi, Moscow, USSR, 1991).
- 4) N. L. Singh et al., Phys. Scr. 61, 550 (2000).
- M. Shahid *et al.*, Nucl. Instrum. Methods Phys. Res. B 358, 160 (2015).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC2014), 3566 (2014).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 8) National Nuclear Data Center, The NuDat 2.7 database, http://www.nndc.bnl.gov/nudat2/.
- 9) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 10) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).