## Production cross sections of <sup>68</sup>Ga via deuteron-induced reactions on natural zinc

Ts. Zolbadral,<sup>\*1,\*2</sup> M. Aikawa,<sup>\*1,\*3,\*2</sup> D. Ichinkhorloo,<sup>\*3,\*2</sup> Kh. Tegshjargal,<sup>\*4</sup> N. Javkhlantugs,<sup>\*4</sup> Y. Komori,<sup>\*2</sup> and H. Haba<sup>\*2</sup>

 $^{68}\mathrm{Ga}~(T_{1/2}=68~\mathrm{min}),$  a positron emitter, is a valuable medical isotope used for positron emission tomography (PET). One of the production routes of this radionuclide is the deuteron-induced reaction on zinc. In a literature survey, only two datasets of the experimental cross sections of the  $^{\mathrm{nat}}\mathrm{Zn}(d,x)^{68}\mathrm{Ga}$  reaction were found,<sup>1,2)</sup> and these data show a remarkable discrepancy. It is necessary to obtain reliable cross sections to investigate the best production route for practical use. Therefore, we measured the production cross sections of  $^{68}\mathrm{Ga}$  via the deuteron-induced reaction on natural zinc.

The stacked-foil activation method and  $\gamma$ -ray spectrometry were used. The stacked target was composed of metallic foils of <sup>nat</sup>Zn (17.64 mg/cm<sup>2</sup>, 99.9% purity) and  $^{nat}$ Ti (9.13 mg/cm<sup>2</sup>, 99.6% purity). The target was irradiated for 22 min by a 24-MeV deuteron beam from the RIKEN AVF cyclotron. The incident beam energy was measured using the time-offlight method. The energy degradation in the stacked foils was calculated using SRIM code.<sup>3)</sup> The beam intensity was measured using a Faraday cup and crosschecked using the <sup>nat</sup>Ti $(d, x)^{48}$ V monitor reaction.<sup>4)</sup> By referring to the cross sections of the monitor reaction, the beam intensity was increased 6.6% from the measured value and thereby corrected to 102.4 nA. The  $\gamma$ -ray spectra of the irradiated foils were measured using a high-resolution HPGe detector (ORTEC

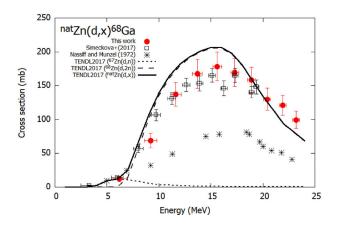



Fig. 1. Excitation function of the  $^{nat}Zn(d, x)^{68}Ga$  reaction.

- \*<sup>2</sup> RIKEN Nishina Center
- \*<sup>3</sup> Faculty of Science, Hokkaido University
- \*4 School of Engineering and Applied Sciences, National University of Mongolia

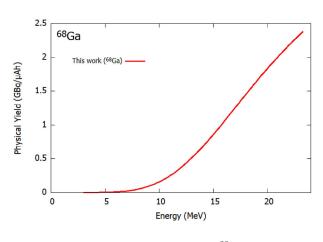



Fig. 2. Integral yield of  $^{68}$ Ga.

GMX30P4-70) without chemical separation. The detector was calibrated using a standard mixed multiple  $\gamma$ -ray-emitting point source. The distance between the detector and foils was chosen to keep the dead time less than 7%.

The cross sections of the <sup>nat</sup>Zn $(d, x)^{68}$ Ga reaction were derived from the measurements of the 1077.34keV  $\gamma$ -line  $(I_{\gamma} = 3.22\%)$  associated with the <sup>68</sup>Ga decay. The excitation function of the reaction is shown in Fig. 1 in comparison with previous data<sup>1,2)</sup> and the theoretical estimation of TENDL-2017.<sup>5)</sup> Our result is consistent with the data reported by Šimečková *et al.*<sup>2)</sup> but inconsistent with those reported by Nassiff and Münzel<sup>1)</sup> in the whole investigated energy region. The TENDL-2017 data overestimate the experimental data around the peak in the energy range of 8–18 MeV.

The physical yield of  $^{68}$ Ga was deduced from the measured cross sections. The derived yield is shown in Fig. 2. The physical yield of  $^{68}$ Ga via the deuteron-induced reaction on zinc is reported for the first time.

This work is supported by JSPS KAKENHI Grant Number 17 K07004. Ts.Z. was granted a scholarship by the M-JEED project (Mongolian-Japan Engineering Education Development Program, J11B16).

## References

- S. J. Nassiff, H. Münzel, Radiochem. Radioanal. Lett. 12, 353 (1972).
- E. Šimečková et al., EPJ Web Conf. 146, 11034 (2017).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 4) A. Hermanne et~al., Nucl. Data Sheets  ${\bf 148},$  338 (2018).
- 5) A. J. Koning et~al., Nucl. Data Sheets  ${\bf 155},$  1 (2019).

<sup>\*1</sup> Graduate School of Biomedical Science and Engineering, Hokkaido University